
 

András Ambrus  

Éva Vásárhelyi (Eds.)  
  

  

  

Problem Solving in  

Mathematics Education  
  

 

 

 

 

  

Proceedings of the 15th ProMath conference  

30 August – 1 September, 2013 in Eger 
 

 

 

  

EÖTVÖS LORÁND UNIVERSITY, FACULTY OF SCIENCE, INSTITUTE OF MATHEMATICS, 

MATHEMATICS TEACHING AND EDUCATION CENTER 

ESZTERHÁZI KÁROLY COLLEGE 

INSTITUTE OF MATHEMATICS AND INFORMATICS 

  



Problem Solving in Mathematics Education  

  

Proceedings of the 15
th

 ProMath conference  
 

30 August – 1 September, 2013 in Eger  

 

  

 

 

 

 

 

ISBN 

 

 

 

 

 

 

 
Editors: András Ambrus and Éva Vásárhelyi  

Layout: Éva Vásárhelyi 

Printing: Haxel nyomda 

Hungary 

http://www.haxel.hu 

Publisher:  

Eötvös Loránd University, Faculty of Science, Institute of Mathematics 

Mathematics Teaching and Education Center 

and 

Eszterházi Károly College, Institute of Mathematics and Informatics 

 

All Rights Reserved © 2014 Mathematics Teaching and Education Center 

 

Copies available by Mathematics Teaching and Education Center;  

Contact: Éva Vásárhelyi vasareva@gmail.com   

 



Content 

Éva Vásárhelyi:  

Preface ……………………………………………………………………………... 5 

Gabriella Ambrus:  

Problem solving and Modelling – Traditions and Possibilities in Hungarian Math-

ematics Education …………………………………………………………………. 

7 

Krisztina Barczi:  

How do they solve problems?  Mathematical problem solving of the average and 

the talented ………………………………………………………………………… 

18 

Lars Burman:  

About problem sequences designed for heterogeneous classes in grade seven …… 35 

Katalin Földesi:  

Kangaroo problems for student teachers in Sweden ………………………………. 43 

Torsten Fritzlar:  

Prospective Teachers’ Conceptions of problem oriented Mathematics  teaching – 

explored and challenged …………………………………………………………… 53 

Günter Graumann:  

Problems with the Imagination of Astronomical Measurements ………………….. 67 

Tünde Kántor:  

Historical aspects in teaching mathematics ……………………………………….. 80 

Eszter Herendiné-Kónya:  

How can high school students solve problems based on the concept of area  

measurement? ……………………………………………………………………… 95 

Ana Kuzle:  

Talent or Something Else? Preservice Teachers on Mathematical (Problem  

Solving) Abilities: Implications for Professional Development …………………... 108 

Anu Laine, Liisa Näveri, Anu Kankaanpää, Maija Ahtee & Erkki Pehkonen:  

Teachers’ and Fourth graders’ questions during a problem-solving lesson ………. 124 

Józsefné Libor:  

When do we have to use recursive or asymptotic formulas or Monte Carlo 

simulation? ………………………………………………………………………… 136 

Erkki Pehkonen:  

Open problems as means for promoting mathematical thinking and understanding 152 

Richárd Rakamazi:  

Solving Diophantine equations with elementary methods and with the help of 

Gaussian integers in high school mathematics study group sessions ....................... 

 

163 

Benjamin Rott:  

Rethinking Heuristics – Characterizations and Examples ………………………… 176 

Takácsné Bubnó Katalin and Viktor László Takács:  

Solving word problems by computer programming ………………………………. 193 

Ferenc Várady:  

Solving differential calculus problems with graphic calculators in a secondary 

grammar school ……………………………………………………………………. 209 

Bernd Zimmerman:  

The Role of affective Components in mathematical Problem Solving ……………. 232 



 

 

 

 



5 

Preface 

ProMath (Problem Solving in Mathematics Education) is a group of didactics of mathematics 

from all over Europe, who have the common aim of furthering and scientifically exploring 

problem-solving activity in mathematics among students, exploring the possibilities and pre-

conditions of problem-solving orientation in mathematics teaching, and promoting it.  

ProMath was founded by Günter Graumann (University of Bielefeld, Germany), Erkki 

Pehkonen (University of Helsinki, Finland) and Bernd Zimmermann (Friedrich-Schiller-

University of Jena, Germany). One of the activities of this group is to organize the annual 

conferences since 1999.  

It is a great pleasure and honour for us to organize and support the 15
th

 ProMath Meeting in 

Pólya’s home country, which took place from August 30 to September 1, 2013 at the Institute 

of Mathematics and Informatics of Eszterházy Károly College, Eger, Hungary. 

"Mathematical Problem Solving Not Only For Talented" 

has been chosen as a central theme of the 15th ProMath conference  

This choice was justified on the website of ProMath (http://promath.org/meeting2013.html) 

by the following:  

"The fostering of talented students in mathematics education has a long tradition in 

the whole world. 

No doubt that the high ability students differ in a great manner form average in their 

ability, interest, motivation, learning habits, memory, noticing the solution patterns, 

problem solving strategies without extra teaching them. On the ProMath2013 Eger 

meeting we are interested for studies and experiences dealing with students not only 

highly talented concerning mathematical problem solving. “Not only” means that 

studies about talented or high-achieving pupils are also welcome." 

It is very interesting to see year in year out the evolution of the ProMath conference.  

 On one hand there is a dynamic change with respect to the participants. The partici-

pants were novice teachers, doctoral students, and retired professors as well, which 

enables a thought-provoking dialogue between the founders and the young  

researchers. 

 On the other hand one can see dynamic changes in the content of the conference. In 

addition to presenting interesting problems − with historical aspects and their multi-
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colored and varied solutions −, there are more and more examinations regarding to the 

role of modern teaching tools and methods. (Modelling, graphic calculators, computer 

simulation, programming, cooperative teaching and learning, ...) 

 Thirdly there is a striking expansion of the research aspects, for example the psycho-

logical aspects of learning are increasingly prevailing in the system of criteria. You 

can find this various aspects in school-reality, in didactical researches, and within the 

topics of this book and of the conference.  

This volume contains the papers of the talks given during the meeting. The papers of this vol-

ume are peer-reviewed according to the contents, organized by András Ambrus. Each author 

is responsible for the proper English of his or her paper. 

I want to thank all participants for their valuable contributions. Let me mention those talks of 

the conference, which are not represented by any article in this volume:  

A. Ambrus: The role of working memory in mathematical problem solving teaching,  

E. Árokszállási: Using different representations in algebraic identities teaching,  

J. Boda: Problems in symbolic calculation created by adult high school students,  

T. Hodnik Cadez: Preschool teachers’ and children’s competences in problem solving, 

L. Naeveri: Connection between teachers’ actions and fifth-graders’ performances 

when solving a non-standard problem. 

Special thanks to Ilona Oláhné Téglási and to the Institute of Mathematics and Informatics of 

the Eszterházi Károly College for the organization and for their hospitality. The charming lit-

tle town of Eger also contributed to the success of the conference.  

We have to thank the Mathematics Teaching and Education Center of the Eötvös Loránd Uni-

versity as well Eszterházi Károly College for supporting this volume.  

 

The figure on the front page is an illustration of the following problem: Show that the area of 

the dotted and the shaded parts are equal.  

 

Budapest, 2014. 

Éva Vásárhelyi 
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Problem solving and Modelling – Traditions and Possibilities in Hungarian 

Mathematics Education 

Gabriella Ambrus 

Eötvös Lóránd University Budapest, Hungary 

ambrusg@cs.elte.hu 

Abstract 

Problem solving and solving modelling tasks are obviously in connection with 

each other. However, a traditional mathematics problem and a modelling task are 

different from several points of view so we may assume for example that a tradi-

tionally clever problem solver in mathematics is not necessarily good at solving 

modelling tasks. I am going to discuss some questions in this subject considering 

the results of modelling tasks solved by secondary school students. 

Key words: Problem solving and modelling, modelling tasks, research in mathematics education 

ZDM classification: D50, M13, M14, F93, F94, F99 

 

Introduction 

The Hungarian education is changing rapidly and these changes with their new contents in 

several fields are hard to follow. The limit of human flexibility and a pithy reform require 

(need) a thoughtful consideration of the possibilities which are provided by good teaching 

traditions.   

The application of knowledge for everyday situations has been emphasized for a long time in  

Hungarian mathematics teaching but for the realisation of this idea only closed word-

problems have been used which are based in a lot of cases on a not really real situation. The 

Hungarian traditions of problem solving may provide a good basis for teaching new or „new 

like” content, so for teaching modelling as well, which has become one of the main points in 

the National Curriculum 2013 (NAT 2013).  

Theoretical background  

There are several definitions for modelling; generally it means the process which describes 

the solution of modelling tasks. The necessary definitions for the subject can be characterised 

in the following way: 

mailto:ambrusg@cs.elte.hu
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Modelling means abstraction of reality by mathematical methods (Greefrath, 2007, 15).  

Modelling tasks are solved by modelling process (in an ideal case it’s a Modelling Cycle, 

Blum, Leiss 2006), they are problem centred authentic open word problems. 

Modelling competency means the competencies, which are necessary for solving modelling 

tasks (without the competencies while working only mathematically) and these competencies 

can be given by the Modelling Cycle. To solve modelling tasks based on problem solving, 

first we should look at the similarity of the four-step model of problem solving to the four-

step model of modelling. 

 

 
 

1.   Understanding the problem 
2.-3. Organizing the information according to mathematical 

concepts and identifying the relevant mathematics 
4. Solving the mathematical problem 
5. Interpreting, validating 

  

Figure 1: Chart according to Pólya’s steps of  

problem-solving (Greefrath, 2007) 

Figure 2: Modelling cycle (PISA 2003) 

Based on Pólya’s steps we can create another chart, which is more relevant to the modelling 

cycle (Blum/Leiss, 2006). 

 

 

  

Figure 3: Possible extension of Pólya’s steps for a 

modelling cycle (Ambrus/Vancsó/ Koren, 2012) 

Figure 4: Modelling cycle (Blum/Leiss, 2006)  
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Analysing the modelling routes of pupils, Borromeo Ferri completed the ideal cycle of 

Blum/Leiss (2006) with phases referring to individuals' characteristics and she obtained dif-

ferent pictures about the connections among the elements in the cycle in case of pupils with 

different thinking types (Borromeo Ferri 2010, p. 113). 

Greefrath (2010) points out that the Blum/Leiß 2006 cycle theoretically allows the problem 

solving and the modelling process to be considered as parallel. Each step of the modelling can 

be interpreted as a separate problem solving process as well. Observing pupils while model-

ling he concluded, that modelling can be observed through the glasses of problem-solving, 

however this is not appropriate because of the different character of modelling tasks. 

There is a rich tradition of problem solving in Hungarian mathematics teaching, so the ques-

tion is given: to what extent is it possible to lean on these traditions while solving modelling 

tasks in schools. Modelling tasks are not used in the everyday practice in Hungarian mathe-

matics lessons nowadays, this way the former question can be formulated as: 

How can Hungarian pupils solve modelling tasks without any experience with modelling tasks? 

There are several studies about how Hungarian pupils solve word problems (Csíkos et al. 

2011). One of them deals with a survey of 4000 students (grades 5-6) using 5 simple model-

ling tasks. They were asked to choose from three possible answers (solutions) of the three fol-

lowing types: a) routine-based, non-realistic, b) a numerical response that takes realistic ele-

ments and considerations into account, c) a realistic response that also refers to the situational 

complication of the problem but says that therefore the problem cannot be solved for each of 

the tasks.  This last answer can be considered as a modelling solution.  

Authors emphasize that in spite of the realistic character of the tasks the majority of students 

chose a non - realistic answer. However, it is important to mention that in case of some tasks 

nearly the same number of students chose type b) as type a).  

Finally 26,5 % of the students gave for at least 4 tasks a type b answer. The average mark of 

the pupils in mathematics who gave the answer b is 4,43 (in Hungarian schools students are 

assessed on a five–level scale, 5 indicating the best and 1 indicating the worst achievement.) 

Research questions 

Even if a student has a good mark in mathematics it does not necessarily mean that he or she 

is a good problem solver. However, it seems that pupils with good marks are better at solving 

modelling tasks. 
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Considering the connection between problem solving and modelling, in this piece of work the 

central research questions are: 

 To what extent are Hungarian students able to work with modelling tasks? 

 Which strategies are used by solving modelling tasks and to what extent are strategies 

known and important for Hungarian students who are good at school mathematics?  

Theoretical framework 

The first question focuses practically on the modelling competency of students. There are 

several ways (all having their barriers) to measure this competency (Riebel, 2010). Riebel 

mentions a method where students receive a point for every correct modelling step. The prob-

lem with this method is that a student who has constructed an incorrect model automatically 

loses points on the following steps. It seems more appropriate to modify the method and “give 

points” for every step that is acceptable. 

In this paper we follow this latter method, every step is worth a point if it is correct, because 

the focus is on the process and not on the result. 

For the process analysis the following modelling steps are considered: 

1. From the real problem into a mathematical problem 

2. Solution of the mathematical problem 

3. From the mathematical result to a real-result 

4. Interpretation of the real result 

For investigating the second question the method of „using self-commented strategies” 

(selbstberichtete Strategienutzung”) is used (Schukajlow/Leiss, 2011).  

In this research, after solving some modelling tasks, the students received a questionnaire 

with statements concerning their strategy. They had to rate each strategy from 1 to 5 deciding 

to what extent they found the strategy useful while working on the given modelling task. 

In the research the following theoretically founded statements were used in a modified ver-

sion (Fig. 5). We used these statements with the modelling task presented in this paper with 

four students after recording their solutions. 

The students' knowledge about strategies was compared to the strategies used while solving 

the task.  
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To what extent do you think are the following strategies important for a  
successful solution? Rate the statements from 1-5. 

While solving this task I would 

1. reread some sentences  

2. highlight (i.e. underline) some important data in the text  

3. make a plan  

4. make sketches and figures  

5. check several times whether my way of solution correct is  

6. look for similar tasks and I would revise their solution before  

7. divide the problem into subtasks before solving it   

8. simplify the task and I would solve this version first   

9. interpret my result whether it is approximately correct  

Figure 5: The statements (strategies) of the students 

Methodology and design of the study  

For the study I utilised some results of my student B. Tóth (2013), furthermore we recorded 

and videotaped the students' solutions of a modelling task. 

In the first case three versions (for three different age groups) (situation: Olympic Stadium) 

were created and solved by about 120 pupils (grades 7-11) of a Hungarian secondary school 

in the autumn of 2012.  In every year group two groups (students taking part in normal or in 

high level course in mathematics) solved it. The versions were different regarding their com-

plexity. The students did not have any former modelling experience. They had about half an 

hour to solve the problem. 

In case of the 120 students we had only their written tests. To get some insight into the 

thoughts of students while working with a modelling task (without any previous experience) 

four solutions of the version for grades 9-10 students of the Olympic Stadium were recorded 

or videotaped in secondary schools in Budapest. This version was chosen for collecting data 

from different grade students and the complexity of this task fitted this purpose the best. Finally, 

these four solutions were collected only from students who are interested in mathematics. 

The students who were asked to share their thoughts while solving the task were selected by 

their teachers and they could decide whether to take part in the survey. They are all good at 

mathematics. The teachers were asked to give a short description of the pupils as well. Among 

the 4 students 3 were classmates (grade 11) in a secondary school, the last one was a grade 11 stu-

dent in a bilingual secondary school (grade 11 means here only a grade 10 in terms of mathemati-

cal studies because of a preparatory year). The names of the students were changed in the paper.  
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Tasks  

 

 

 

Figure 6: Tasks 
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Some results of the study 

About the students’ work that were created in the classes  

Among the 120 pupils there were 60 who prepared a model as the first step. In the solutions 

the occurrence of the 4
th

 step was the rarest. Most of the students who were uncertain in their 

result wrote an interpretation for their solutions.          

Pupils who had some idea for solving the task made 3 steps and got a sort of result as well.  

The average number of steps shows an interesting picture. In every age group the number of 

steps is higher in the high level classes, and older age means generally higher average number 

of steps, however the tendency isn’t linear.  

 
Figure 7: Average number of modelling steps   

Although several models were constructed in every age group, these were mostly unaccept-

able, especially among the works of the pupils in grade 7. Their work was often based on an 

incorrect assumption regarding the length and width of the runway. 

 
Figure 8: The student assumed that the runway is 1 m wide and so every runway is 1 m longer than the  

previous one.   

 

Although the starting ideas were right, many students could not use the picture on the sheet 

but they tried to work only from the text. They prepared a very simple model; they worked 

out mostly unfounded estimations.   

Results of the recorded solutions  

The students worked on the version of the “Olympic Stadium” task which was created for 

grade 9-10. Three students are classmates in a year 11 class; while the fourth is a grade 10 



14 

 

student in a secondary school. 

Géza: A boy with an inconsistent behaviour, sometimes he cannot be trusted, but otherwise he 

is a nice fellow. He always has some ideas. Mathematics is important for him, he wants to be 

better, but does not always have a 5 mark. He spent the previous year abroad; he has been in 

the current class since last September.  

He started to solve the task coolly and it seemed that he knew how to begin. He prepared a 

first cast after he threw away his first idea: to work with the number of rows in the picture. He 

went through the modelling steps neglecting the last interpretation step. In his “final” solution 

he assumed that the shape of the stadium is a circle and r = 180/2 = 90 m. He obtained an  

acceptable result, about 700 people in the first row.  

He needed about 11 minutes for the solution.   

After solving the task he rated the following strategies as the most important ones (4 or 5 

marks): Rereading some sentences, making a plan; checking several times, dividing in sub-

tasks, and interpreting the result. He used these strategies except for the interpretation of the 

final result.  

Zsuzsi: She has a scrupulous character and she usually writes the mathematics tests without 

mistakes. She is meticulous, and usually does not add anything new to things. She is dutiful, 

accomplishes what she is asked. She has a steady 5 in mathematics.  

She was surprised by the task. She used only the picture for the solution, and made several as-

sumptions for the circumference of the first row. Finally, she took it for 500 m and found that 

the number of people in the first row is about 880 (60 cm for a person). She didn’t interpret 

the final result, so she used 3 modelling steps.  

She needed about 12 minutes for the solution. 

After solving the task she rated the following strategies as the most important (with 4 or 5 

marks): Rereading of the text, making sketches and figures, checking several times, dividing 

into subtasks, simplifying the task, and interpreting the result. She used some from these 

strategies while solving the task: rereading of the text, making sketches and figures, checking 

several times, simplifying the task (she worked only on the picture). 

Árpád: He is good at and interested in mathematics. Furthermore, he is creative but often has 

a problem with accepting novelty. He is a good problem solver and is quick in the uptake.  He 

can’t give up things; he often struggles with problems.  

It was immediately obvious that he found the task very strange. He said that he had expected a 

really difficult mathematics problem (not this one). He didn’t understand what the expected 
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solution was he tried to find it out (by direct questions) several times while solving the task. 

He made a sketch, he gave the length of the semicircles and parts by assumption. Afterwards, 

he gave an average number for the radius of the stadium and he worked with circles (concern-

ing the shape of the runway). For the number of people in the first row his result was 836. He 

found that it is too many and took (without any explanation referring to the picture) 700 as the 

answer. He went through the modelling steps neglecting the last interpretation. 

He needed about 24 minutes for the solution.  

After solving the task he rated the following strategies as the most important (4 or 5 marks): 

Making sketches, figures, simplifying, and interpretation of the result. While solving the task 

he used: making sketches, simplifying (temptation several times).  

It is to mention that from the statements he considered the least important (rated 1-2) he used 

several strategies: making a plan, looking for a similar task, checking several times (mostly by 

asking whether his way of solution is correct). 

Zoli: He is quick in uptake and good at mathematics. He likes to finish the tasks quickly; he 

always focuses on the result. 

After receiving the task he was thinking for a long time. He tried to work in the picture. He 

found 72 sectors on the figure so he assumed that about 80 000 : 72 = 1111 people were in 

one sector. He got stuck here. After a while he went on with another method. He assumed that 

the runway was a 100 x 100 rectangle (a square) and so calculated 250 people (40 cm for one 

person) on one side, so 1000 people would sit in the first row. After the question of the 

teacher who made the videotaping whether this result was realistic, he corrected the place 

needed for one person to 50 cm obtaining the final result of 800 people. He didn’t interpret 

the final result. 

He needed 11 minutes for the solution. He went through the modelling steps neglecting the 

last interpretation. 

After the solution of the task he rated the following strategies as the most important (4 or 5 

marks): Making sketches, checking several times, interpretation of the final result. He used 

these while solving the task except for the interpretation - he did it only after the teacher’s 

remark. 

Discussion 

The samples we used to obtain the results had different size (120 students and 4 students). 

The number of modelling steps used by the students in their work shows – although they had 
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not solved modelling tasks before – that many students seem to be able to do an „intuitional 

modelling”.  However, doing several modelling steps does not necessary mean finding an ac-

ceptable solution. 

Students who are good at problem solving are generally able to execute more modelling steps; 

it means that they can make a better start with modelling tasks. They consider the task as a 

problem that they have to solve. Presumably this better result is supported by their positive 

belief about mathematics as well.  

The four observed students rated “making a plan” generally as „unimportant”. It coincides 

with the result of Schukajlow/Leiss 2011 in which this problem is discussed in detail. Al-

though an interpretation of the final result was missing in almost everyone's work, they 

checked their solution several times while working on the task. The four good problem 

solvers mentioned different number of strategies as important when solving this task, so it 

seems that they know about strategies which can help the problem-solving. The character of 

the problem solver, i.e. mathematical thinking style (visual thinking style, analytical thinking 

style, integrated thinking style, Borromeo Ferri, 2010) may have an effect on the person's 

modelling process and on the quality of the solution as well. 

Conclusion and further perspective 

Although the questions were investigated only with a few students so the results are not 

enough for general statements, it is promising that several modelling steps are present in the 

work of the investigated students without having any previous experience with modelling. 

This refers to a basically good modelling competency in these cases mostly among good prob-

lem solvers. The knowledge of strategies is pretty good among the investigated good problem 

solvers but there is a discrepancy between this knowledge and the application of strategies in 

a given situation. An important experience is that during the investigation students must be 

helped and encouraged while solving unusual tasks. They need (would have needed) more 

feedback while solving the task. While working on this type of task alone, students may have 

negative, uncertain feelings which may influence their modelling work and the acceptance of 

this type of task in a contra productive way as it happened in the case of Árpád. A previous 

discussion of the modelling process and the character of modelling tasks seem to be necessary 

especially for low achieving students. 

For a more thorough analysis of the research question further investigations are needed. For 

example: 
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 Further collection of data among good and normal problem solvers with different types of 

modelling tasks. 

 Investigation among students with different ability in mathematics (with a control group) 

whether a reassuring feedback from the teacher or the possibility of a discussion with other 

pupils (i.e. working in groups) has a positive influence on working with modelling tasks. 

 In this paper we considered the use of strategies only among good Hungarian problem 

solvers. A wider investigation could clarify whether a correlation between strategy 

knowledge and achievement in mathematics exists. In their investigation Schukajlow/Less 

2011 couldn’t find such a correlation. 

Acknowledgments: Thanks to Hegyi Györgyné, Koren Balázs for their help with the realisa-

tion of videotaping and recording student’s solutions. 
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How do they solve problems?  

Mathematical problem solving of the average and the talented 

Krisztina Barczi 

University of Debrecen, Neumann János Secondary School, Hungary 

bkrixta@gmail.com 

 

Abstract 

When it comes to mathematical problem solving probably everybody has a prefer-

ence in terms of how to handle the task in hand. The choice of solution method 

depends - among many other things - on the students’ level of Maths knowledge. 

Those who are talented prefer one way while those who have a rather average 

ability in Maths prefer another one. This article compares and contrasts the prob-

lem solving style of a talented and that of an average ability student in different 

types of lessons. In one lesson frontal teaching was used and in the other one co-

operative teaching techniques were applied. 

Key words: cooperative learning, talented, average ability, mathematics 

ZDM classification: C20, C30, C40, C60, D40 

 

1. Introduction 

In Hungarian secondary schools mathematics is mainly taught in heterogeneous classes, 

which means that talented students work together with the average ability ones and the low-

achievers. This scenario requires differentiation from the teacher which is not always easy to 

accomplish. Furthermore, in this environment the teacher needs to ensure some kind of suc-

cess for all students regardless of their mathematical ability. 

Although more and more alternative teaching methods are appearing in schools the most 

widely used teaching method is still frontal teaching where differentiation is not impossible 

but sometimes is really challenging. Even students with similar ability level can have different 

working paces, or some are slower in grasping concepts and ideas even if they are good at ac-

tually solving problems. 

This article describes an experiment that was carried out in a secondary school class and 

whose main aim was to find out how different ability students reacted in different problem 

solving situations. For this, two students – based on the students’ previous mathematical 

mailto:bkrixta@gmail.com
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achievement and occasional competition results one of them can be considered as talented in 

Maths and the other one as an average ability student – were observed in two types of lessons. 

In one type of the lessons frontal teaching was used while in the other one cooperative teach-

ing techniques were applied.  Here, we summarize our experience. 

2. Theoretical background 

The aims of teaching Mathematics 

One of the main aims of teaching mathematics is to make students understand mathematical 

concepts and their relations and to help them acquire thinking skills that can be used in prob-

lem solving regardless of the content, both in the field of mathematics and in other areas as 

well. (Ambrus, 2004)  

As understanding has a primary importance, let us examine first how concepts are formed in 

our mind. Most everyday concepts are formed with the help of objects or experiences from 

our everyday life. That is why most of them are easy to remember since we can connect them 

to something we know very well. The difficulty of understanding and learning mathematical 

concepts lies in their abstractness. Students cannot learn mathematical concepts from their 

own experiences only with the help of someone else. In schools teachers try to choose good 

examples that demonstrate the nature of a concept. Furthermore, according to Skemp (2005) 

when teaching mathematical concepts the level of the students’ knowledge and that of the 

concept should be in line.  

Understanding and learning a mathematical concept is only the beginning of a process. In or-

der to become successful problem solvers students need to be able to apply what they learnt. 

A concept can be applied if it is fully understood. Two types of transfers can prove that a stu-

dent had understood a concept. Near transfer means using the concept in a situation that is 

similar to the ones used in the teaching situation while far or knowledge transfer means that 

the student can apply the concept in a context that is completely different from the above 

mentioned one. (Dobi, 2002) For the low-achiever or average ability students achieving near 

transfer already means success. 

Besides helping students understand mathematics and helping them be able to use what they 

learnt in different problem solving situations, it is important that they experience the joy of 

thinking. (Szendrei, 2005) For average ability students it is slightly more difficult to show that 

mathematical thinking can be similar to playing with different thoughts but if the teacher 
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manages to make these students feel that doing maths can be creative and enjoyable than they 

can become more successful.  

Furthermore, for helping all students experience success effective differentiation is needed in 

the classroom, for which recognizing talented students in mathematics is necessary. As Miller 

(1990) says students who are talented in mathematics have an ability to understand even com-

plex mathematical ideas and can use mathematical reasoning very well, but they are not nec-

essary the students who are good at arithmetic calculations or have top grades in Maths. Fur-

thermore, maths talents often have emotions related to numbers and they have an interest in 

the subject in their early years already. They like solving puzzles and they are successful in 

completing tests that measure memory or visual skills. Moreover, these students often use 

specific procedures for solving problems. (Gyarmathy, 2006) 

Different students have different problem solving preferences which depend on their person-

ality, their mathematical ability, their motivation … etc, so there is no rule which tells us that 

for talented students we should use a specific approach. For high ability students fast track or 

acceleration programs might be beneficial especially if talent is matched with motivation. On 

the other hand, slower or less motivated students might do better if the learning pace is slower 

and the learning focuses deliberately on the mathematical concepts being taught. (Miller, 

1990) In an average classroom using cooperative learning structures might be beneficial for 

both types of students. 

Talent or average ability, all students gain from learning in a mathematically enriched envi-

ronment. For this social interactions between students should be encouraged, the appearance 

of emotional connections should be facilitated, the students’ individual style should be taken 

into consideration and the development of students’ self-confidence should be emphasized 

(Caine et al, 2004). Again, when using cooperative learning structures the above mentioned 

factors appear more easily than in a frontal class. 

Cooperative teaching and learning 

In cooperative learning students are arranged in groups so that they have to work together in 

order to achieve a common goal, to solve a problem. For successfully overcoming the possi-

ble difficulties the members of the teams must rely on each other, respect and support each 

other since their success depends on their ability to work together. (Kagan, 2004) In Hungary 

it was József Benda whose work had an effect on the appearance of cooperative teaching in 

education as he believed that this teaching method can contribute to the integration, achieve-

ment and development of students. (Józsa & Székely, 2004) 
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Many people think that using cooperative techniques is the same as simply making students 

work in groups. I want to clarify a difference. In group work students are put together and 

given a task to solve and it is their job to find out who does which part of the task and share 

out the responsibilities. This working format often results in the best student doing all the 

work while the others copy everything while some students might not even listen. To avoid 

this, cooperative structures were created in a way that the following four principles are always 

present: Positive interdependence; Individual accountability; Equal participation; Simultane-

ous interactions. These four principles ensure that every member of the group is an active par-

ticipant and the team’s success is everyone’s responsibility. (Johnson & Johnson, 1994) To 

help teachers explain and students to remember these structures they were given catchy 

names. (Kagan, 2003) Here are some examples for cooperative structures: 1) Think-Pair-

Share: Students work in groups of four. A problem is presented to the students. They are 

given time to think on their own about possible answers for a specific amount of time. Stu-

dents discuss their answers in twos. 2) Round Robin: This structure gives an opportunity for 

each member of the group to speak. Starting with one student, everyone gets 1- 3 minutes to 

present their point of view. (Kagan, 2004) 3) Jigsaw: Each team needs to become an expert of 

a topic/solution of a problem. New groups are formed with one member from each of the 

original groups. They share their knowledge. Finally, everyone goes back to the original 

groups (Slavin, 1995). 

When using cooperative teaching techniques the issue of composing the groups is important. 

How the teacher forms groups might depend on the teacher, on the students, on the type of the 

lesson … etc. However, no matter what the arranging principle is an ideal group consists of 

four members. The reason for this is that in a group of four two pairs can be formed, further-

more if every member needs to communicate with every member than the number of interac-

tions is 6 and nobody is left out, while if the number of group members is three or five one 

student might feel neglected (Burns, 1990). 

In cooperative teaching and learning not only the classroom setting but the teacher’s role is 

different. First of all, instead of being the person who takes control over the whole teaching 

and learning process and leads the students through the lesson, the teachers becomes an ob-

server or a coach who consults the groups or with individual students and helps the ones who 

are left behind. The teacher is still needed in the classroom only the function has changed. 

Since the teacher can walk around the classroom, he can give an instant feedback for the 

groups or he can help the groups overcome the obstacles to learning or problem solving. 

(Crabill, 1990) However, it is still the teacher’s responsibility to ensure the right environment 
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for learning. Just because students are working in groups and there are parallel discussions the 

classroom should not turn into a permissive and chaotic place. (Dees, 1990)  

3. Questions 

During the experiment and the two particular lessons we focused on the following questions: 

1) How do talented/average ability students solve problems in frontal classwork?  

2) How do talented/average ability students solve problems in cooperative work?  

3) How do they feel about the different scenarios? 

4. The experiment 

The two lessons where these two specific students were observed were part of a longer ex-

periment. This experiment was an action research, which is usually carried out by practicing 

teachers who would like to achieve professional development. According to Koshy (2005) ac-

tion research is a kind of enquiry during which the teacher constantly changes and refines his 

practice and this process leads to his professional development. Since action research is about 

the researcher’s own practice, it is participatory and situation – based. Furthermore, action re-

search is a tool that brings the goal of mathematics teachers and researchers of maths educa-

tion closer. (Zimmermann, 2009) 

The present experiment was carried out in a mixed comprehensive secondary school whose 

students are 12-20 years old. The school is considered “a good school” since the students at-

tending here are the ones who did best on the entrance exam. 

Sixteen 16 - 17 years old students took part in the experiment. In the academic year when the 

experiment happened they attended a class that specializes in maths and foreign languages. In 

their preparatory year the number of maths lessons per week was three, in the following two 

years they had four maths lessons every week. That year the class followed the year 10 

scheme of work for Hungarian secondary schools. The teacher of the class was the researcher, 

as well. 

In the first part of the experiment 12 lessons were held where 5 mathematical problems were 

discussed – there were 2-3 lessons planned for each problem. Although these problems were 

curriculum-based Maths tasks, they were different from the ones that are used in an average 

Maths class. These problems were open-ended problems or investigations. These 12 lessons 

were planned with cooperative method only.  

In the second part of the experiment, in the rest of the school year the students continued 
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working with the official scheme of work and they had lessons with cooperative method once 

every 2-3 weeks, depending on the material. 

During the experiment for collecting data the following methods were used: 1) students had 

so called “reflection booklets” which were exercise books where students solved the problems 

and recorded their feelings and ideas about the methods used; 2) half of the lessons were 

video recorded; 3) the work of every group was voice recorded; 4) students completed pre-, 

post and delayed mathematical tests; 5) students completed pre- and post- psychological ques-

tionnaires. 

5. Focus on these two students 

During the above described experiment all 16 students were observed, but in this article the 

focus will be on two particular students. To obtain a picture on their problem solving style 

and problem solving preferences their notes from their “reflection booklets” were checked, in 

addition they filled out a questionnaire
1
 on cooperative learning at the end of the experiment. 

The results of these students on the three mathematical tests were analysed as well. Further-

more, these two students were observed in two specific lessons which were planned in the 

same topic with different teaching methods, one of them with frontal teaching using closed 

problems, the other with using cooperative techniques and an investigation task. The teacher’s 

notes from these two lessons will be discussed, too. 

The students 

Let us call the two students Richard who is the talented and Alex who is the average ability 

student. In the following section their attitude towards mathematics, their behaviour in maths 

lessons and their maths results are summarized. 

Richard’s mathematics grades contained mostly 5s
2
 with some 4s in the past three years. He 

often participated in mathematics competitions where he achieved good results, besides he 

regularly attended maths group study sessions. His attitude towards mathematics was defi-

nitely positive and he showed great confidence when it came to sharing ideas with the class. 

In lessons he took part actively in discussions but worked well individually if necessary. 

When solving a new task he often contributed with useful ideas or comments. 

Alex’s mathematics grades contained 2s, 3s, 4s and 5s. His half year mark in 2012/2013 was 

3 while his end of year mark was 5. His achievement was rather fluctuating, it often depended 

                                                 
1
 Appendix 

2
 In the Hungarian system 5 is the best grade and 1 is the worst. 



24 

 

on the topic how well he completed a test. His work was mainly focused on classwork and 

completing the homework but Alex never attended group study sessions or never applied for 

competitions in maths in the past 3 years. Especially at the beginning of his first year in this 

school he had low self-confidence in terms of mathematical knowledge and in a problem solv-

ing situation he often relied on the other students’ ideas or help. During classwork he often 

sought assistance, mainly from the teacher, or simply just wanted reassurance. In class discus-

sions he participated only when he was asked. 

6. The lessons 

Frontal teaching 

The topic of the lesson that was taught using frontal teaching was generalizing trigonometric 

ratios; the type of the lesson was practice. The students had previously learned how to inter-

pret trigonometric ratios for angles bigger than 90º and how to find angles if the trigonometric 

ratio was given. In this lesson they had to work from the following worksheet: 

Complete the following tasks. 

1. Without using a protractor mark the following angles in the Cartesian coordinate grid: 

a) 120° c) – 130° e) – 90° 

b) – 45° d) 270° f) 750° 

2. Find the acute angles whose trigonometric ratio is equal to: 

a) sin (240°) c) sin (210°) e) sin (810°) 

b) cos (315°) d) cos (– 45°)  

3. Find all angles for which the following equations are fulfilled: 

a) sin α = 0,47 c) cos α = 1 e) sin α = – 0,6 

b) cos α = – 0,17 d) sin α = 0  

In this lesson the students were given the above worksheet and they were asked to solve the 

tasks. The answers were checked as they proceeded and when we found a question that eve-

rybody had difficulty with we had a class discussion. When individual students got stuck on a 

problem they either helped each other or they asked for the teachers’ help. 

Cooperative lesson 

The topic of this lesson was generalizing trigonometric ratios too, and its type was also prac-

tice through an investigation. With cooperative techniques there is a better opportunity to use 

so called open problems or investigations which can be considered as open problems. 

(Pehkonen, 1999) 
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In the lesson students were working in groups of four and they had to solve the following 

task: Given two segments and the trigonometric ratio of an angle. Are there any triangles 

whose sides are the segments and whose angle is the given angle? Try to find and draw all 

possible triangles.
3
 

The lesson plan was the following: 

1. Forming groups 

2. Trying to solve the task using the structures “Think-Pair-Share” and “Round Robin” 

3. Group discussion in groups of four to make sure that every member understands the 

ideas and the group’s solution 

4. Sharing the different solutions of the groups using the structure “Jigsaw” 

5. Collecting all the solutions and checking ideas through class discussion 

7. Observations and experience 

The teacher’s perspective 

As mentioned before observations were made during the two particular lessons with special 

attention on the two students, Richard and Alex. Their classwork and participation can be de-

scribed as the following.  

Frontal lesson 

Richard worked really well on his own. He used his previous knowledge confidently and 

when he was ahead of the others in answering the questions he was happy to help them. Rich-

ard copied a task first then he solved it and proceeded through the whole worksheet without 

changing the order of the exercises. During the task solving phase he never asked for help or 

for reassurance from the teacher. However, he was an active participant in class discussions, 

when we were checking the solution methods and the answers. 

On the other hand, Alex did try to work on his own, but with less success. He often looked 

puzzled and he was trying to check what his neighbour was doing. When he had no idea how 

to start he looked back in his exercises book trying to find examples that he could use. In spite 

of the fact that he did not always know how to answer the questions Alex did not speak to 

anyone and he hardly asked for help. Even when he decided to ask for clarification of the task 

or just for some guidelines he chose to ask the teacher. From the worksheet first he copied all 

                                                 
3
 The four groups received four different data to work with. The trigonometric ratio was always the sin ratio 
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the questions and only thereafter did he try to solve them.
4
 During class discussions Alex only 

listened to the discussion instead of taking actively part in the conversation. He checked his 

answers and copied the missing ones or corrected the incorrect ones but never asked why his 

solution was incorrect or how to obtain the right answer. 

Cooperative lesson 

First of all it is important to mention that this lesson was only one of the many where the stu-

dents used cooperative techniques for mathematical problem solving. By the time this lesson 

was taught the students had had experience with working in groups. 

As mentioned before, Richard preferred working alone and this was obvious from his attitude 

to cooperative work as well. For him his own success and progress was always more impor-

tant than that of his group. He was not willing to share his ideas and thoughts if he did not 

have to. However, when he was talking to his group mates he behaved as if he was superior to 

the others and played more of a leading role rather than cooperating with the others. 

As for Alex the grouping of this lesson was not the most fortunate for him.
5
 After receiving 

the task first he looked puzzled then waited. Following that, all of a sudden he started writing 

down some ideas then stopped. When he had to share his ideas he was very brief and not 

really confident. In earlier classes with cooperative learning he was a more active participant. 

When using the structure “Jigsaw” new groups were formed which had a positive effect on 

the work of both students being observed. 

Richard was more willing to share his work and he was proudly sharing his group’s ideas and 

solutions with the others. However, he still found it hard to listen to the other students and he 

preferred being the one who tells the others what to do. 

This grouping suited Alex better than the previous one which was reflected in his attitude and 

class work. He became a more active listener and when it was his turn to speak and share 

ideas he was much more confident, moreover he did not mind making mistakes and was 

braver in taking the risk of saying something that was not necessary correct. 

8. The students’ comments on cooperative learning 

The following ideas were written in the students’ “reflection booklets” after the 12 cooperative 

lessons at the beginning of the school year. 

                                                 
4
  I believe that the reason for this behaviour is that the student wanted the others to think that he was busy work-

ing on the problems. I think, in this way he was trying to hide the fact that his knowledge was not stable 

enough. 
5
 Alex and Richard ended up in the same group. 
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Richard wrote: “At first I didn’t prefer working in groups but often it was useful since we 

were able to discuss results with each other. We managed to find many solutions that I had 

never thought of before. Basically now I like cooperative work, although it depends on the 

members of my group. If my group mates were inactive or just messed about it made progress 

more difficult.” 

Alex wrote: “I didn't always like my group mates. There was always someone to help. For me 

cooperative work was sometimes too much. The tasks were interesting and varied. Since I 

prefer working alone cooperative work was a negative experience for me. However, in this 

way we solved special problems. We could come up with good ideas. In the future I would like 

to avoid working in groups, although it is a good idea.” 

9. Questionnaire about cooperative work 

The questionnaire contained 20 statements
6
. For analysing students’ answers the statements 

were organized into three groups on the basis of the following aspects: (1) statements related 

to cooperative work; (2) statements related to attitude towards Mathematics; (3) statements 

about relationship to the others (students or the teacher). 

Cooperative work 

Statement 
1 

(+) 

2 

(+) 

3 

(+) 

5 

(+) 

11 

(+) 

12 

(+) 

13 

(+) 

14 

(+) 

16 

(-) 

17 

(-) 

18 

(-) 

19 

(-) 

Richard 3 4 3 1 3 5 5 5 2 5 3 4 

Alex 3 2 2 2 3 3 2 2 3 4 5 5 

The above table shows how the two students reacted to statements that are related to coopera-

tive work. The statements whose number is marked with (+) are the ones that are in favour of 

cooperative work while the ones marked with (-) describe some disadvantages of working in 

groups. The mean average score for Richard on the statements marked with a (+) is 3.625 and 

the standard deviation is 1.4 while the mean average of Alex’s answers is 2.375 and the stan-

dard deviation is 0.5. This means that in general Richard had a more positive attitude to group 

work but his answers have a wider range. Moreover, there are aspects of cooperative work 

(statement 12, 13, 14) that Richard definitely liked.  

On the other hand, Alex’s answers clearly show that he did not feel the positive statements 

true for him. His average score is lower, so is the standard deviation which means that his 

opinion on group work was quite consistent. 

                                                 
6 
 Appendix 
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Statements 16, 17, 18 and 19 are negative statements about cooperative work and the scores 

of both students are in line with their opinion on group work. 

Maths related feelings 

Statement 4 6 7 9 10 20 

Richard 2 1 4 3 1 1 

Alex 3 3 5 3 2 2 

The second table summarizes the answers for statements that refer to the students’ attitude to 

mathematics or a change in their feelings towards the subject. The mean average of Richard’s 

scores is 1.71, the standard deviation is 1.38. The mean average of Alex’s scores is 2.57, the 

standard deviation is 1.51. The data shows that there was no significant change in Richard’s atti-

tude towards mathematics – from experience it can be said that it had already been positive.  

Alex’s answers show that there was less change in his attitude in the positive direction; how-

ever, the scores in the last two statements refer to a positive change in his confidence in doing 

(?) mathematics. 

Relationship 

Statement 8 15 

Richard 1 6 

Alex 4 2 

Only two statements were related to the relationship with others. The 8
th 

statement asks about 

the attitude to the teacher. Although the table shows that for Richard being brave enough to 

ask questions from the teacher is not true, experience proves the opposite. He never had issues 

with asking for help or further explanation, so he must have misunderstood the statement. On 

the other hand, Alex said that he became more confident when it comes to asking questions.  

Statement 20 is about attitude to fellow students. It can be clearly seen that Richard definitely 

became more patient with others, so cooperative work improved his interpersonal skills which 

is supported by the teacher’s observation, too. On the other hand, group work did not have 

much effect on Alex’s attitude to his classmates 

10. The students’ achievement on the mathematical tests 

As mentioned before during this action research students had to complete three mathematical 

tests, one before the 12 lessons, one after the 12 lessons and one test about 8 months after the 
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post-test. All three tests contained 9 mathematical problems which were designed so that they 

measure the students’ knowledge in mathematical areas that will be needed for the discussion 

of the 5 problems at the beginning of the experiment. Furthermore, they tested how well the 

students use different problem solving methods (eg.: thinking backwards, trial and improve-

ment … etc. (Ambrus, 2004) 

Some of the pre-test tasks were repeated in the post-test, however, the latest contained 

questions trying to elicit knowledge gained during the 12 lessons of the experiment, too. The 

delayed test was completely identical to the post-test. When marking the test the individual 

tasks were equally weighed. All 9 tasks were worth 5 marks. The following diagrams show 

Richard’s and Alex’s achievement on the three different tests and the last graph compares the 

total of their marks on the mathematical tests.  

In the pre-test Richard completed 6 tasks fully (see: Figure 1), this number remained the same 

throughout the three tests. It can clearly be seen that his achievement was already good on the 

pre-test and he managed to perform similarly on the following two tests as well. 

 

Figure 1 

On the pre-test he had difficulties with solving the following problems: 5. permutations; 6. 

word problem that can be solved with simple equation; 7. calculating area. On the post-test 

the following types were problematic for him: 2. the justification of a divisibility problem; 4. 

permutations; 6. justification of a problem including number theory. Finally, on the delayed 

test the solution of the following problems was incomplete or left out: 4. permutations; 6. 

justification of a problem including number theory; 8. geometry. 

Figure 2 clearly shows that Alex’s achievement was not steady. In the pre-test he managed to 

solve three tasks fully and this number decreased to two in the post-test and increased back to 

three in the delayed test. On the pre-test he had difficulties with solving the following 

problems: 3. thinking backwards; 4. and 5. permutations – systematic thinking; 6. word 
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problem that can be solved with simple equation; 7. calculating area; 9. pattern recognition. 

On the post-test the following types were problematic for Alex: 2. the justification of a 

divisibility problem; 4. and 5. permutations; 6. justification of a problem including number 

theory; 7. calculating area; 8. geometric calculation; 9. pattern recognition. Finally, on the 

delayed test the solution of the following problems was either missing or incomplete:  

1. greatest common divisor (gcd) – systematic thinking; 2. justifying a divisibility problem;  

4. permutations; 6. justification of a problem including number theory; 7. area calculation;  

8. geometry. 

 

Figure 2 

Figure 3 summarizes the marks the students achieved on all three tests. Richard was already 

at 34 points out of the total 45 and in the post-test he achieved 36 points. There was a slight 

decrease in the delayed test but his achievement was still satisfactory. 

On the other hand Alex’s the difference between pre- and delayed test results show a 

considerable increase from 16 points to the total of 26 points. 

 

Figure 3 
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11. Discussion 

Taking both the particular lessons and the whole school year into consideration the following 

observations and thoughts can be phrased. 

For Richard, the talented student there was no significant difference between his results in the 

pre-, post- or delayed Mathematics test. Of course, since his achievement was quite good on 

the first test already there was not too much area for improvement. However, there were tasks 

where he showed some improvement, for example in problems that involved permutations his 

marks were higher in the post- and delayed - tests.   

On the other hand there was definitely a positive change in his attitude towards the others. He 

became more patient with the other students when he had to explain something or when he 

presented his ideas. From the teacher’s observations it is clear that Richard was more and 

more willing to be a “team player”.  Moreover, there was a positive change in terms of his 

classroom activity, too.  

Alex’s mathematical achievement had never been steady which can be clearly seen from his 

test result throughout the three years when we worked together. During this experiment he 

achieved better result in some post-test tasks and his delayed test marks were much better. 

Comparing the post- and the delayed tests Alex definitely showed an improvement in prob-

lems that required pattern recognition (9.), moreover he received more marks for problems 

where permutations had to be applied (4. and 5.). Besides these tests there was an improve-

ment in his school grades as well which might be a result of his personality becoming more 

mature, too. His half year mark was 3, while by the end of the school year he managed to 

achieve 5. 

As for Alex’s attitude to cooperative work from his comments it is not obvious whether he 

liked them or not as his opinion is rather inconsistent
7
. However, from the observations it is 

clear that his self-confidence changed in the positive direction. He became a more confident 

presenter and he needed less reassurance by the end of the school year. 

Since using cooperative techniques definitely had a positive impact on both students, in my 

future classes I will use this method to encourage the average ability students to share their 

mathematical ideas and to help talented students to be more willing to share their knowledge 

with their classmates. 

                                                 
7
 See his comment 
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12. Future work 

The broader action research resulted in a massive amount of data that needs to be organized 

and analysed. The psychological questionnaires of the other participating students need to be 

analysed and the results compared to that of the above discussed students. The comments and 

solutions in the “reflection booklets” should be interpreted as well, and the video and voice 

recordings contain valuable pieces of information, too. After analysing all the tests and 

questionnaires a new experiment could be designed with another group of students from a 

different age group with using different problems. 
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Appendix   

Questionnaire on cooperative learning (Mécs, 2009) 

 1 - not true for me 6 - totally true for me 

Statements 

 1 2 3 4 5 6 

1. The other students’ explanations helped.       

2. I liked working together.       

3. I enjoy lessons with group work more.       

4. I understood maths better than in the previous year.       

5. I liked talking to people to whom I have never spoken before.       

6. I’m not afraid of maths.       

7. I could explain the solutions to others.       

8. I dare to ask questions from my teacher.       

9. I paid more attention and solved more tasks in maths.       

10. Doing homework is easier now.       

11. I understand my classmates’ explanations better.       

12. I prefer sharing my ideas in small groups.       

13. I would like group work in Maths next year.       

14. I am more active when working in groups.       

15. I became more patient with others.       

16. The noise was disruptive.       

17. I would have been faster alone.       

18. I prefer doing maths tasks alone.       

19. I prefer my teacher’s explanations.       

20. I don’t mind sharing my ideas with the whole class.       
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Abstract 

In this article teaching of problem solving in grade seven is addressed. Based on a 

proposal of teacher-guided practice with problem sequences by Burman and 

Wallin (2014), the author deals with the challenge that problem solving in mathe-

matics should be designed for all pupils and not only for the talented. Problem se-

quences may be seen as a supplement to ordinary teaching in mathematics and the 

article describes pilot-tests in a lower-secondary school in Finland. The tests are 

situated in a Finnish reality but the design of the teaching process is based on ear-

lier research with a connection to ProMath-conferences and combined with Nor-

dic research. In a problem sequence the pupils work partly in groups and partly 

individually, they discuss the results with the teacher, they receive new informa-

tion and guide-lines and then they proceed. The pilot-tests in a heterogeneous 

class seem promising as two main bases to build a development on have been 

found.  

Key words: Grade seven, heterogeneous classes, problem sequences, problem solving, 

teacher-guided practice.  

ZDM classification: D50, D73 

 

Introduction 

In the Finnish Matriculation Examination there is an extremely long tradition to test the stu-

dents’ competencies in mathematics by giving them ten tasks to solve in six hours.
1
 Conse-

quently, there is a very strong focus on tasks which can be solved within half an hour whereas 

tasks of other types, e.g. problems and modeling projects, are not given so much focus. Fur-

thermore, the Matriculation Examination has a great influence, not only on the instruction in 

upper-secondary school, but also on instruction in grades seven to nine. Accordingly, 

Pehkonen and Rossi (2007) conclude that the conventional teaching method is still the domi-

nant one although alternative teaching methods (including problem solving and project work, 

the author’s remark) have been delivered to Finnish teachers since more than twenty years.  

                                                 
1
 Nowadays the students have to choose their 10 tasks among 15 tasks. 
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In comparison to other Nordic countries, Denmark is well-known for the competence perspec-

tive on mathematics education, as presented in Danish research by Niss and Jensen (2002). 

For instance, Blomhøj and Jensen (2007) define the concept competence as someone’s in-

sightful readiness to act in response to the challenge of a given situation. In their visual repre-

sentation of the eight competences in mathematics, four are particularly interesting. These 

competencies are mathematical thinking competence, reasoning competence, problem tack-

ling competence and modeling competence. 

The aim of the research and the aim of this article 

The aim of the research behind this article is to design tasks larger than short problem-solving 

tasks (and the tasks in the Finnish Matriculation Examination) but not as extended as projects. 

The purpose of the tasks is to develop the instruction in grade seven (and furthermore, in 

grades eight and nine) and more precisely to strengthen the pupils’ skills in mathematical 

thinking and reasoning, problem solving and readiness to work with applications and model-

ing. It should be stressed that my purpose is to design some kind of supplement to the courses 

in mathematics, a supplement that teachers would consider an opportunity and not an obstacle 

to cover the normal content in the courses of the curriculum. The special focus of this article 

is to address that fact that problem solving in mathematics should be designed for all pupils 

and not only for the talented. 

Starting point and framework 

Almost thirty years ago, Mason, Burton and Stacey (1985) argued that the rapid ques-

tion/answer format of many mathematics classrooms is the antithesis of the time and space 

upon which developing mathematical thinking depends. Instead they stated that practice de-

mands ample time for tackling each question independently and the quality of the reflection 

depends upon the time to review thoughtfully, to consider alternatives and to follow exten-

sions. Furthermore, they urged teachers to choose questions which can provoke thinking and 

to recognize how essential confidence is and to create a supportive environment where some 

success comes to each pupil. According to them, working in groups was helpful, choosing of 

suitable questions was essential and mathematical thinking could be improved by practice 

with reflection. 

In the introduction to 14
th

 ICMI Study Volume, Niss, Blum and Galbraith (2007) outlined a 

framework that is very useful when the aim is to develop tasks for problem solving. They de-
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scribed the starting point as a space where problem solving meets application and modeling. 

Accordingly, a problem is a task that cannot be solved using only previously known standard 

methods. Moreover, a method may be standard for one individual at the same time that it is 

not for another individual. The concept problem is used in a broad sense, including not only 

practical problems, but also problems of a more intellectual nature that aims at describing, ex-

plaining, understanding or even designing parts of the world. Problems taken from the real 

world have to do with nature, society or culture, including everyday life. In the term modeling 

they included the entire process of structuring, generating real world facts and data, mathema-

tizing, working mathematically and interpreting and validating, perhaps several times round 

(parts of) the loop. Then, an application (of mathematics) is a real world problem that has 

been addressed by means of mathematics. A competency is the ability of an individual to per-

form certain appropriate actions in problem situations where these actions are required and 

desirable. Consequently, we can speak about problem-solving competency as the ability to 

find the solution to a task not corresponding to the previously known standard methods, and 

(mathematical) modeling competency as the ability to identify relevant questions, variables, 

relations or assumptions in a given real world situation, to translate these into mathematics 

and to interpret and validate the solution of the resulting mathematical problem in relation to 

the given situation. As the problem-solving competency and the modeling competency are not 

sufficient to solve real-world tasks, we also need other competencies such as representing 

mathematical objects involved in an appropriate way and arguing and justifying what is being 

done when applying mathematical algorithms and procedures. As problem solving and model-

ing often are used as a group activity, social competency, more or less specific for mathemat-

ics, is needed for an effective cooperative teamwork and must not be forgotten. Finally, deal-

ing with applications and modeling in mathematics, there are a challenge, a dilemma or a 

problem, and questions, which together form an issue.  

I have found it appropriate to use a framework, very similar to that outlined by Niss, Blum 

and Galbraith in my research and also to use it in order to reach the aim of this article. But in 

addition to the definition of problem above, Pehkonen (1997) provides two definitions for my 

work. He deals with methods for educational change and suggests the use of problem fields as 

such a method. In this context, he defines a problem field as a set of connected problems and 

the connected problems form a sequence of problems. He also notes that in a problem field, 

the difficulty of the problems may range from very simple ones that can be solved by the 

whole class, to more difficult problems which only the more advanced students might be able 

to solve. I agree with Pehkonen and accept his definition of problem fields but prefer to use 
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the concept problem sequence from now on, when I focus on problems formed by the se-

quence of subproblems more than on problems as separate problems linked to each other or 

problems as more or less separate extensions from a certain problem. 

In an article in the proceedings of the 11
th

 ProMath conference 2009, in Budapest, Henze and 

Fritzlar (2010) examine model-building processes by the example of Fermi questions and 

show in a figure that there are several similarities between problem solving and modeling. 

They also conclude that modeling processes can be understood as one specific type of prob-

lem solving. Furthermore, in his doctoral thesis, Ärlebäck (2009) also refers to Fermi prob-

lems, as he addresses the issue of how to introduce mathematical modeling to upper-

secondary students. He has found that groups of students engaged in solving realistic Fermi 

problems display problem-solving behavior resembling sub-activities of the modelling pro-

cess. Consequently, I find that if there is a problem-solving behavior resembling sub-activities 

of the modeling process, it might be possible to find certain problems or tasks which could be 

used as good problem-solving tasks but also as an introduction to and exercise for future 

mathematical modeling tasks. On the other hand, good exercise in problem solving may also 

include elements resembling modelling processes. 

Theoretical conclusions and the design product 

Based on the theoretical background above, I conclude that there is a need to improve mathe-

matical thinking and the quality of reflection and thought. This can be done by offering the 

pupils good questions and challenges, as well as possibilities to work with a somewhat more 

extended problem. I find an advantage in dividing the work with problems into steps and giv-

ing the pupils possibilities to discuss within the whole class and with the teacher between the-

se steps. Apparently, in this case the pupils receive exercise in handling with different kinds 

of problems and they are not only tested if they are able to solve a certain problem by them-

selves. If possible, it is preferable that the problems should have a real world connection, but 

equally important is the need to create a supportive environment, where working in groups 

and good teamwork are successful.  

Consequently, the way of working in a math class should combine the pupils’ own problem 

solving in groups with discussions about the results so far and new information and new di-

rections for the on-going work given by the teacher. I prefer to divide the process in steps, as 

the teacher then can give new information between the steps and sometimes give the work a 

more or less new orientation. Depending on the time available, the teacher could also give the 
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pupils one of the steps as an individual homework. As a whole, the way of working, including 

the kind of problems used, can be described as using 

teacher-guided problem sequences.  

In this article I have a special focus on obstacles occurring as the instruction is designed to in-

clude all pupils and not only talented pupils. When considering this focus, two aspects seem 

to be very important: 

*  Doing some of the steps in groups may inspire all pupils to do their very best in order to 

give their contribution to the group. Furthermore, the positive feeling of having been part of a 

successful problem solving is more likely to emerge after working in a group than after an in-

dividual work. 

*  The problem sequences or at least some steps in a sequence can be constructed to include 

problems at different levels of demands. In addition, connected problems may have an in-

creased level of difficulty from (very) easy to (much) more demanding. 

Two examples of problem sequences 

In the following, I present two examples of problem sequences in order to highlight some of 

the benefits of the method used. 

Example 1    Find the prime factors of the numbers 1 - 50. 

Step 1     The teacher gives an introduction to the problem and demonstrates the solution for 

the numbers 1 - 16. The teacher shows for instance 11 = 11, 12 = 3 ∙ 2 ∙ 2, 13 = 13 and 

14 = 7 ∙ 2 and the pupils make a list. The teacher has told them to reserve space for all the 

whole numbers up to 50. 

Step 2     Pupils are divided into groups and every group receives one paper where the task is 

to find and write down the prime factors of the numbers 17 - 32. The pupils are also asked to 

try to find and write down some smart ways of reasoning as they are solving the task. 

After step 2 the groups hand in their papers. Then, the teacher notes the prime factors of the 

numbers 17 - 32 to ensure that every pupil has got a correct list up to the number 32. 

Step 3     Pupils are asked to follow the previous examples and the smart ideas from the dis-

cussion and are given the numbers 33 - 50 as homework. As a special challenge they receive 

an optional task to answer the question how it is possible to decide that a number is a prime 

number or more precisely to know when it is no longer necessary to check any more possibili-

ties to factorize the actual number. 
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Next lesson, there is a kind of follow-up where the main concern is threefold: to ensure that 

everybody has got the right prime factors for the numbers up to 50, to repeat the “smart ideas” 

and to give an answer to the special challenge. 

Step 4     For this step, which is the last one in the sequence, there are two options, of which 

also only one can be used. If there is time, at least for some pupils, it is possible to enlarge the 

list of numbers with prime factors. Another possibility is to check the pupils’ ability to find 

prime factors to some number both below and above 50 in some kind of summative assess-

ment. 

The task is not new but I have chosen to implement it in steps as a teacher-guided problem 

sequence. The task can be considered central and important as both the way of working with 

it and the result of it are important in tasks to come in the future. In the pilot-test, step 1 was 

done as a teacher-led information and demonstration, but of course, the pupils were constantly 

asked to participate in the work. Step 2 was carried out as a group work. In the discussion in 

the pilot group after step 2, most of the pupils found multiplication tables very useful. Some 

other suggestions were also made, for instance the idea to use the prime factors of 15 when 

the actual number was 30 and it was possible to write 30 = 15 ∙ 2. Step 3 was an individual 

work, but any kind of help and co-work at home was not excluded in step 3. Finally, in step 4, 

the abilities of the pupils were checked individually.  

Concerning the focus on teaching in a heterogeneous group, the step 2 was a work made in 

groups, and in all the steps 1 - 3, there were numbers which were easy to factorize. In some 

cases there were also very similar factorizations to imitate. A special notation must be given 

to the fact that after this problem sequence, all pupils have got a list of their own, where they 

can find the prime factors of all the numbers from 1 to 50. 

Example 2    Find the angle between minute and hour hands of the clock (at different times). 

Step 1     The teacher gives an introduction to the problem sequence. After a short discussion 

with questions and answers, the main information should be clear to everybody: at the same 

time when the minute hand covers a full angle, 360°, the hour hand covers an angle of 30°. 

Step 2     The pupils are divided into groups with approximately three pupils in each group. 

They are asked to find the angle between minute and hour hands of the clock at the following 

times: 13.00, 13.30, 13.15 and 13.45. Every group receives a paper on which the pupils are 

supposed to draw figures and write down their answers. 
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The groups hand in their papers and the results are discussed with the teacher, who may give 

explanations to some of the answers. 

Step 3     The pupils are asked to solve similar problems individually. Every pupil receives a 

paper and the given times are: 11.00 , 17.00 , 14.30 , 15.15 , 12.45 , 14.25 and 17.48.  

When a certain time has passed (or when everybody is ready), the papers are handed in and 

the results are discussed. If necessary, the teacher explains some of the results. 

In the third step the pupils’ papers can be used for a summative assessment. It is also possible 

to use four steps. In that case the third step may be done as a homework and the fourth step as 

a summative assessment in class. If three steps are used, it may be possible to do the whole 

sequence within a lesson. If four steps are used, including a homework-step, it means that the 

sequence might require more time but there is also the advantage that the problems have been 

present at three different occasions. As in the example 1, another possibility is to see what the 

pupils can achieve in some kind of summative assessment later on. 

The second problem is also a classic one, but implemented in steps as a teacher-guided prob-

lem sequence. The task can be used to train logical work with proportionalities. In this se-

quence there were steps of teacher-led information and demonstration, group work and indi-

vidual work. In a heterogeneous group it was important that the work in step 2 was made in 

groups, and that there was a gradually increasing difficulty level in the steps 2 - 3. Of course, 

the last time was supposed to be a challenge to most of the pupils in the seventh grade. 

Concluding remarks 

I have found the use of problem sequences in a heterogeneous class in the seventh grade very 

useful. It is possible and also desirable to construct and use problem sequences which include 

group work and problems with an increasing level of difficulty. Then, every pupil is invited to 

contribute to the solution of the problems in the group and it is more likely that everybody 

gets to experience the feeling of success in at least some sense. Group activities possess the 

potential to provide everybody with the feeling of having solved the problems together. Last 

but not least, with using the problem sequences it was possible to reach a development in the 

direction towards higher-order thinking, when the pupils had no previously solved tasks to 

imitate. The results strongly suggest research and development of teacher-guided problem se-

quences in a larger scale in Finland, as well as in other countries. 
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Abstract 

One of the important goals of student teacher education is for the students to de-

velop their problem solving skills.This is the basis of the student learning basic 

didactic skills within this area. We know from many years of teaching experience 

that at our university, student teachers have a troubled relationship with mathe-

matics.Thus, we are looking for teaching material that does three things simulta-

neously: develops the students' problem solving abilities, helps the students im-

prove their knowledge of didactics within the field of problem solving by working 

through problems with didactics specifically in mind, and helps the students 

achieve a positive relationship with mathematics. Since the main goal of the inter-

national Kangaroo competition is the popularization of mathematics for students, 

and it allows students of ages 6 to 19 to participate, we chose its problem collec-

tion to conduct our research with. The experiences of the last few years have 

shown us that carefully selected competition problems, and their conscious appli-

cation helps the achievement of all three goals. Our experiences also show that the 

problem solving skills of our university's student teachers are weaker than the 

problem solving skills of the best of the students they, in turn, teach. 

Key words: Mathematics education, Kangoroo competition, problemsolving, student teacher 

education 
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Introduction 

The importance of mathematical problem solving is evident from the fact that the concept ap-

pears predominantly in the Swedish math syllabus even prior to 2011. In 2011, however, a 

new syllabus and a new system of evaluation came into effect across the entire Swedish gen-

eral education, and at the same time, the renewal of Swedish student teaching was kicked off 

as well. 

The prominence of problem solving in the 2011 Swedish math syllabus is emphasized by it 

being an element of content, an element on the list of skills that needs to be developed, and an 

element of the evaluation process as well. 
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Between 2013 and 2016, all Swedish math teachers are required to take a compulsory course 

called Matematiklyft. Part of this course deals with mathematical problem solving. 

The Kangaroo competition (http://www.math-ksf.org) presents an opportunity to grapple with 

mathematical problems for a wide range of students: from the first year of secondary school 

all the way to fourth year of high school. 

With regard to students teachers, two observations beckon to be made here: the problems re-

quire a way of mathematical reasoning that is very unusual for the students, and especially in 

the beginning feel very difficult. Solving the problems is especially difficult for students who, 

up to this point, had practiced math in a way that emphasized procedural calculations and the 

solution of a narrow class of problems that can be easily expressed using algorithms, usually 

presented by their teacher in the first few minutes of class, after which they practiced solving 

similar problems using the same methodology. 

First I will write about the situation with mathematical problem solving in Sweden, and then 

about a few of the general and Sweden-specific characteristics of the Kangaroo competition. 

The situation of problem solving in Sweden 

György Pólya's book "How to solve it?", first published in 1943, is of particular significance 

when it comes to the didactics of mathematical problem solving. A few years ago it was still 

mentioned in a couple of high school course books, along with the photo and brief biography 

of Pólya, as well as five point problem solving method that he had developed - however, none 

of it got used in Swedish math teaching. 

For the last couple of years, the theoretical foundation of mathematical problem solving in 

Sweden has been a single concept, and later, an American study handling the concept in a 

special way. This concept is "rich mathematical problem". It appeared in mathematical di-

dactic literature a few years ago. Below is an example of such a problem, from a Swedish 

mathematical didactics book: 

“Linda bought books at the book store. She bought three books for a total of 450 SEK, Kier-

kegaard, Magorian and Ende. Kierkegaard cost 100 SEK more than Ende. Kierkegaard and 

Ende together cost 190 SEK more than Magorian. 

A) How much did each book cost? 

B) Formulate a similar problem and solve it.” (Hagland-Taflin-Hedrén, 2005) 

The problem contains the following mathematical concepts: natural numbers, sum, difference, 

table, equation, matrix and logic. One of the purposes of question B) is to allow the teacher to 

http://www.math-ksf.org/
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evaluate the extent to which the student understands the math behind the problem. This par-

ticular problem was aimed at secondary school students, years 7-9. 

The rich mathematical problem's strong dependence on the math taught in the secondary 

schools of a country is immediately obvious, since the same problem is used as a simple but 

very important practice question in several other countries. 

Today in Sweden an American study is used as a model for treating rich mathematical prob-

lems in the classroom. (Stein at al., 2008) 

The study presents in detail a method for treating problem solving. It comes with the warmest 

of recommendations for any student teacher. Reading the study, and then trying out the meth-

od is warmly recommended to all Swedish math teachers that enroll in the continuation 

course. 

The main points of the method are as follows: 

• The teacher presents the problem and makes sure the students understand it linguistically 

and mathematically 

• Each student spends a few minutes trying to solve it individually or in pair 

• The students continue to work on the problem in small groups, agree to a solution, the 

teacher walks between the groups 

• Some of the solutions are presented at the blackboard and are discussed by the group or 

the entire class 

According to the method it is extremely important that the teacher selects which solutions to 

be presented in front of the class based on a mathematically and didactically well thought-

through structure and during the discussion labors on the deepening of the mathematical con-

tent of the solutions presented by the students. 

About the Kangaroo Competition in Sweden 

To start with, I would like to summarize some general characteristics of the competition then, 

I will mention some things that are specific to Sweden. 

The competition is individual. It is arranged to take place annually in March. Its goal is the 

popularization of mathematics, which also means that it does not require extensive technical 

preparation, making it readily available to a huge number of students. It consists of 12-24 

problems, mostly multiple choice questions with five possible choices. Each question has only 

one correct answer. The time allotted for the competition is 60 minutes. After the competition, 

the teacher can quickly correct the answers using the provided solution key, and can then send 
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in the results. A few weeks after the competition, the problems, the correct answers including 

brief solutions as well as materials that will help the mathematical and didactical write-up of 

the solutions are presented on the competition web page. 

The top results, along with the students' names and schools, are presented on the competition's 

web page. However, only the top 15 placements are shown on these lists. Thus, students with 

lower scores lose not only the little bit of publicity in connection with this, but also the oppor-

tunity to show development over the past year. Both of these can be incredibly important mo-

tivational factors. This way of presenting the top placements obviously reflects some aspects 

of Swedish culture. 

Since 2000, competition materials can be freely downloaded, copied and edited as well, which 

for practicing student teachers provides an easy way to construct interesting series of prob-

lems. 

For the practicing student teacher, enrolling in the competition, running the actual competi-

tion, marking the answers and sending in the results can be done with a minimum of extra 

work. 

I would like to mention a few characteristics of the problems. I feel that these characteristics 

make them especially suitable for use in the training of teachers. 

Many problems contain visual information, pictures, illustrations, geometrical figures, nota-

tions, graphs et cetera. Since most Swedish primary, secondary and high school math is about 

practical usability and preparation for further studies, when it comes to the selection and dis-

cussion of the materials used, analytical students that are good at numbers have an immeasur-

able advantage, while students who think visually, and mainly think in pictures and have a 

rich mathematical intuition are disadvantaged. 

The problems contain modern mathematical subjects in much greater measure than the nor-

mally used course books: graphs, topology, combinatorics, number theory, logic, set theory 

and so on. This is important, should either the teacher or the student decide to complement the 

occurring mathematics from other sources. 

The problem texts are short, barely a few lines, and are formulated simply, often containing 

explanatory elements. 

Routine problems do not occur at all, which can be somewhat refreshing for students weary of 

them. 

For several years now there have been signs that some students, who traditionally perform 

poorly at school mathematics, achieve excellent results at the Kangaroo competition. 
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My own anecdote adding to this is that I have had a student who answered 23 out of 24 ques-

tions correctly during the competition, but a week later was able to provide complete, mathe-

matically correct solutions to just a third of the problems. 

Currently there is research underway to explore the correlation between students who achieve 

good results at the Kangaroo competition, and their performance at school mathematics. 

Could it be that the Kangaroo competition can be used to discover students whose perfor-

mance is weak, but who have a talent for mathematics? 

Now I would like to present the names of the levels of the competition, as well as the corre-

sponding school classes, and high school course names, in Sweden: 

• Milou – primary school and secondary school years 1-2 

• Ecolier – secondary school years 3-4 

• Benjamin – secondary school years 5-7 

• Cadet – secondary school years 8-9 as well as Math A (first math course) in high school 

• Junior - Math B (second math course and so on) and C in high school 

• Student- Math D and E in high school 

It can be seen almost immediately that there are two disadvantageous categories for many of 

the participants: Benjamin and Cadet, which both spam three years and that will not help their 

mathematical development. Splitting those two categories into several would, from a mathe-

matical didactical point of view, be much more advantageous, even though it would no doubt 

lead to a considerably increased work load. 

Research questions 

1. How can we use the Kangaroo competition and its problems in the education of math 

student teachers? 

2. What experience can we gain? 

Methodology 

I carried out four way of applying Kangaroo competition in the education of students. 

Method 1: Student teacher participation in the Kangaroo competition 

Most of our student teachers have no experience of mathematical competitions. This is one of 

the reasons I began to encourage our students to participate in the Kangaroo Competition on 

the same terms as the other (non-teacher) students. The competition committee found this idea 
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to be good and accepted it. For several of the student teachers, even just one such experience 

was enough to make them organize competition participation in their own classes in turn. 

Method 2: Competition participation, and analyzing the problems 

Within my own mathematical and didactical courses, I tried a second method. First, the stu-

dents participated in the live competition. Immediately afterwards, the complete solution of 

the competition problems was given to them as homework. Next time the class met, the stu-

dents worked in threes on the problems. The solution of each problem was then presented at 

the blackboard by one or more students. Afterwards, both the problems and the solutions were 

analyzed mathematically and didactically. 

Method 3: Problem analysis without competition participation, with group discussion 

This method was tried several times, too: the competition problems were given to the students 

as homework, with a full week to complete it, without knowing the correct answers. After the 

week had passed, one or more students presented the solutions in front of the class. Naturally, 

the presented solutions were discussed and analyzed from both a mathematical and a didacti-

cal point of view. 

Method 4: Competition problem analysis as homework, with complete, written solutions  

required 

I would like to present a fourth method as well, which I tried with several students who were 

specializing in mathematics. In this case, the competition problems were given to the students 

without the solutions. Complete, written solutions were requested. 

Results and discussion 

I had to work hard at convincing the students to participate in the competition. For many stu-

dents, the experience of the competition was just one more in a row of negative memories. 

Due to organizational reasons, I did not always have an opportunity to discuss of the competi-

tion problems within a sufficiently short time frame after the competition. To me it is obvious 

that continuous practice of mathematical problem solving using with help from the teacher 

would be the optimal solution, but making this happen may not be possible in the current or-

ganizational frameworks, and the country's cultural traditions present an additional difficulty. 

Although we regularly have about a hundred new students on our mathematics and mathemat-

ical didactics courses, each year only about 15 participate in the Kangaroo competition. 

My experience with the third method has been the following: the students I tried this method 

on were not specializing in math, were extremely unsure of math in general, and it was for 
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them an added difficulty to stand in front of the class and present their solution. Many of the 

students heavily opposed this method, and I was not always good at handling the opposition 

pedagogically. On the other hand, several students distinguished themselves by giving very 

clear presentations, showing a high degree of mathematical clarity. While this ability should 

be a very important characteristic of a teacher, it was only present in a small subset of the stu-

dents. 

Students, solved Kangaroo problems by Method 4, ended up having a much more difficult 

time, than the students using the 2nd method. Often they could not make use of help, or the 

knowledge of math was lacking, or their knowledge of mathematical problem solving was 

lacking. My conclusion regarding this method is that oral discussion is indispensable when it 

comes to the development of the students. One reason for this may be the students' insuffi-

cient skill at communicating math in writing. 

Next I have collected some important experiences. 

• On the importance of knowledge of basic set theory and mathematical logic 

I would like to mention some particular difficulties I ran into. Knowledge of the basic ele-

ments of mathematical logic and set theory are indispensable for our students. In accordance 

with the previous (pre-2011) math syllabus, these became present only at the end of the stu-

dents' high school years, and even then only in the classes that studied most maths. Mathemat-

ical didactical research supports that these basic elements of mathematics must be present 

during the whole stretch of secondary and high school studies. I would like to give an exam-

ple of such a problem. 

“The two cats Bill and Bull sometimes run into the two dogs Karo and Lufs. Bill is afraid of 

both dogs, but Bull is only afraid of Karo and is a good friend with Lufs. Which statement is 

incorrect? 

A: Each cat is afraid of some dog. 

B: Some cat is friend with one dog. 

C: There is a dog that scares both cats. 

D: Each dog scares some cat. 

E: There is a dog which is good friend with both cats.” (Problem 18, Ecolier level, 2005.) 

The most difficult thing for the students was to understand that of the possible choices, each 

choice is either true or false, with nothing in between. "All", "each" and "there exist" were all 

constructs that had to be explained. Because of these mathematical difficulties, many students 

did not notice the subtle humor of the problem, even though cats and dogs are both favorite 
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pets in Sweden, to such an exists that they are usually included in the answer to the question 

"Who are in your family?". 

• A piece of good advice: “Do just as the problem text says!” 

Swedish math teaching is still all too focused on numbers, calculations and algorithms, with-

out much formal explanation of the algorithm itself. As a result, most problems that deviate 

even just a little bit from the usual end up being incredibly difficult for the students. 

Even just understanding the problem text often turned out to be very difficult for many stu-

dents. In these cases, the following simple instruction turned out to be of great help: “Do just 

as the problem text says, follow it exactly!” The following problem was of this kind. 

“There is room for four people around a square table, with one person on each side. For the 

school prom, the students line up seven such tables next to each other, forming a single long 

table. How many people is there room for around with long table?” (Problem 6, Ecolier level, 

2006) 

In this case, following the text of the problem on paper, e.g. using a simple drawing, may not 

only give the student a key to the solution, but in the process of drawing also show how the 

problem could be generalized. 

• The mathematical and didactical analysis of the Kangaroo-problems 

It was often very difficult to work through the problem mathematically: How did you solve 

the problem? What mathematical tools did you use? When? How? Can you expand the prob-

lem? Can you rewrite it and make it easier or more difficult? 

Then came the didactical analysis of the problem: What mathematical concepts are present in 

the problem? In what class would you present this problem to your students? Why? 

I would like to give an example of such a problem. 

“Four house sparrows sit on a fence. They’re Leo, Olle, Moa and Ida. Leo is sitting between 

Olle and Moa. The distance between Olle and Leo is the same as the distance between Moa 

and Ida. Leo is sitting 4 meters from Ida. What is the distance between Ida and Olle?” (Prob-

lem 15, Ecolier level, 2006) 

It required lots of assistance from the teacher to make the students realize that the four spar-

rows represent four points on a line segment. This may be a result of the minimal content of 

Swedish geometry teaching. 

• Fruitful visual problems 

Some problems have almost no mathematical prerequisites, but the ability to be able to inter-

pret an image, a graph or other visual information and work with it. Here is an example: 
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“A toy store sells a construction set consisting of black and while blocks arranged in four lay-

ers. Each layer consists of blocks of the same color. The image on the right shows the set 

from above. How many white blocks are there in the construction set? (Figure 1) 

 

Figure 1 

(Problem 4, Benjamin level, 2008) 

• Problems with possible solutions at different levels 

“A class of 28 children stands in line. Ali has twice as many children behind him as in front. 

Where in the line is Ali?” (Problem 17, Ecolier level, 2002) 

It is possible to solve this problem immediately using a drawing, but you can also arrive at an 

answer by introducing an unknown and setting up a simple equation. 

Finally, I would like to compare the different categories of students with regard to how they 

handled the increasing difficulty levels of the Kangaroo Competition (Table 1).  

competition 

categories 
Student teachers 

 Primary school to secondary school, 

Grade 5-6, no math 

Secondary school, Grade 7-9 and high 

school, math 

Milou yes, but needs to think more than usual yes 

Ecolier yes, but the difficulties begin here yes 

Benjamin yes, but even more difficulties yes 

Cadet no, definitely yes, but the difficulties begin 

Junior no, some exceptions yes, but more difficulties 

Student no, some exceptions yes, but even more difficulties 

Table 1 

 

The table clearly shows and reflects my several years of experiences, that in both categories, 

the problem solving levels of future math teachers is below the problem solving levels of their 

brightest students. 
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Summary 

Experiences so far show that at our university, the Kangaroo competition and its problems 

work very well at developing and deepening the problem solving skills of future mathematics 

teachers. Additional efforts need to be made to increase the number of participations in the 

competition. 
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Abstract 

Supporting prospective teachers in developing appropriate conceptions of mathe-

matics, and of teaching and learning mathematics, is an important task of teacher 

education. In this article, I report on a university seminar in which I tried to ex-

plore and challenge the conceptions of (the complexity of) problem solving 

mathematics teaching of eight teacher students. 
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Introduction 

Beliefs, attitudes and conceptions of teachers are a scientific research field that has been fre-

quently addressed by scholars in school research, education sciences, and, in recent years, 

also in didactics (Forgasz & Leder, 2008; Leder, Pehkonen, & Törner, 2002). However, there 

is no general agreement on the definition of this research objects (e. g. Forgasz & Leder, 

2008; Mason, 2004; Pajares, 1992); it depends largely on the respective specialist discipline 

or on the research interest in question. 

Pehkonen (1994) describes beliefs as relatively stable, experience-based, subjective and often 

implicit knowledge of a certain object or concern, combined with an affective, meaning-

constitutive component. Furthermore, they are of course not free of norms and values 

(Zimmermann, 1991). The cognitive components are often also referred to as conceptions 

(Pehkonen & Törner, 1996). 

It seems certain that teachers’ conceptions have a significant influence on the dynamics in 

class, on the interaction and communication processes in class and, finally, also on what pu-

pils learn (Forgasz & Leder, 2008; Mayers, 1994; Staub & Stern, 2002; Thompson, 1992). 

Yet, it cannot be assumed that there is a simple unidirectional or monocausal correlation be-

tween teachers’ conceptions and their actions (Clarke & Hollingsworth, 2002; Devlin, 2006). 
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An important task in both teacher education and advanced vocational training thus seems to 

lie in supporting students and teachers in developing appropriate conceptions (e. g. Mayers, 

1994; Rolka, Rösken, & Liljedahl, 2006; Tillema, 2000). If, for instance, one wants to achieve 

a stronger problem orientation in mathematics classes – as called for by mathematics educa-

tionalists all over the world for very good reasons –, it does not suffice to develop a new cur-

riculum and provide teaching materials. Rather, one should (sustainably) influence and 

change the (prospective) teachers’ conceptions of problem solving teaching. E. g., regarding 

the failure of the problem-solving based reforms of the mathematics curriculum in the USA in 

the late 1980s (Schoenfeld, 2007), Rösken, Pepin & Törner (2011, p. 451) summarize: “Nu-

merous studies have detected that the reasons for that ‘failure’ were to some extent the ‘inap-

propriate’ beliefs of teachers concerning mathematics in general, and the process of problem 

solving and characteristics of doing mathematics in particular, in addition to strong teacher 

convictions concerning students’ apparent lack of ability.” 

However, changing conceptions is not a simple exercise because e. g. already first year stu-

dents, from their time at school, possess distinctive conceptions of teaching methods, of what 

defines a good teacher and how they see themselves as teachers (e. g. Kagan, 1992). On the 

other hand, conceptions that have once been acquired are considered to be stable and difficult 

to change, also due to their self-stabilising effects that can be explained by both their filter ef-

fect (Ambrose, 2004; Pajares, 1992) and by cross-linkages and clustering (Pehkonen, 1994). 

Nevertheless, a number of studies indicate that conceptions of (future) teachers can be 

changed or at least challenged (Fennema et al., 1996; Mayers, 1994). First steps in this direc-

tion could be to problematise current conceptions and practices, and to sensitise for new pos-

sibilities in mathematics teaching (Kaasila, Hannula, Laine, & Pehkonen, 2006; Ponte & 

Mercê, 2011; Thompson, 1991). 

What could be beneficial conceptions of mathematics teaching? 

But which conceptions should teachers actually have of mathematics as a school subject? In 

search of possible answers, teachers’ conceptions of mathematics and mathematics teaching 

are often divided into different groups (e. g. Thompson, 1992) which are not independent of 

each other (Felbrich & Müller, 2007). 

With regard to conceptions of mathematics, it is useful to understand mathematics as an open, 

dynamically developing system, as a creative, generally insecure construct of research com-

munities that is culturally embedded and historically grown (cf. Ernest, 1991). 
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With regard to conceptions of teaching and learning mathematics, we can, in a first approxi-

mation, differentiate between a transmission paradigm which is oriented towards association-

istic theories, and a constructivist paradigm which emphasizes the independent learning ac-

tivities of pupils. In the Scholastik study, Staub and Stern (2002) were able to show that pri-

mary school teachers with a cognitive-constructivist view are far more likely to see greater 

learning progress among their pupils, both with regard to demanding word problems and basic 

numerical abilities.  

Moreover, conceptions of mathematics classes seem particularly important to me. In this con-

text, Kießwetter (1994) has called attention to a fundamental consideration in mathematics 

education. To him, teaching is “problem solving in complex constellations”. Classroom con-

stellations are highly complex – i. e they are characterised by a particularly high comprehen-

siveness, they are dynamic, somewhat non-transparent and full of insecurities (Fritzlar, 2004). 

For these reasons, they are generally not designed to result in optimum outcomes, but in ac-

ceptable compromises. From my point of view, the complexity of problem oriented mathe-

matics classes even goes beyond this level. This is due to the mathematical comprehensive-

ness and to the manifold different, simultaneous and highly dynamic working processes of the 

pupils which should be supervised and supported if necessary. However, these working proc-

esses are often surprising, hardly predictable and difficult to understand, also because they are 

influenced by various classroom conditions and elements of lesson design (Fritzlar, 2004). 

If a stronger problem orientation is to be achieved in mathematics classes, teacher students 

and teachers should also be made aware of this complexity and the associated challenges and 

limitations. This could be important to enable a reflexive mode of handling and reducing 

complexities (Helsper, 2003), to initiate a less dogmatic and corrigible manner of dealing with 

knowledge and apparent certainties, a thinking in possibilities and a curious eye for the uncer-

tain (cf. Blanck, 2007). The availability of routines that reduce complexity, which have 

played a significant role in research on teachers’ expertise for many years (e. g. Bromme, 

1992), is important due to the limited capacity of humans to process information. What mat-

ters, however, is that these routines and the resulting reduction of complexity can be ques-

tioned and given up, and that a willingness, an openness to actually do this is developed. An 

according sensitization in this context can help to reduce the fear of uncertainties and make 

unavoidable deficiencies of human action in highly complex situations more bearable 

(Kießwetter, 1994). 

In the following, concept and course of a practical seminar at university are reported, whereby 

I pursued the aim to problematise students’ current conceptions on problem oriented mathe-
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matics teaching and to make them aware of its complexity and its effects. 

The seminar participants were asked, amongst other things, to collect and reflect on the results 

of their work in a journal, and occasionally they were explicitly required to submit written 

thoughts and evaluations relevant to the topic. At the end of the seminar, I conducted a con-

cluding discussion with each of the students, giving the chance to reflect once more on the 

outcomes and processes of one’s work as well as possible learning experiences.  

The written and oral comments were examined for expressions indicating conceptions on 

problem oriented mathematics teaching, especially regarding its complexity, and expressions 

which imply a questioning or changing of these conceptions. In the following sections of this 

article, selected search results are presented waiving detailed qualitative and quantitative 

analysis. First of all, they are gathered to demonstrate that it indeed seems possible to 

question conceptions on problem oriented mathematics teaching at university within a short 

period of time. 

A practical seminar on the doily-problem 

Students at the Martin-Luther-University in Halle-Wittenberg were given the opportunity to 

exemplarily gather (partly first) experiences on problem oriented mathematics teaching in the 

context of a practical seminar in 2010. Participants of the seminar were eight first- and second 

year female teacher students for primary school (which were not selected by the author). Their 

task was to each have one Year 4 class work on the following problem, which is mathemati-

cally rather comprehensive but at the same time approachable even by primary school pupils 

in a number of different ways (cf. Fritzlar, 2004). 

The doily-problem (formulation not for pupils) 

A rectangular A4 sheet of paper is halved by folding it parallel to the shorter edge. The result-

ing double sheet can be halved again by folding parallel to the shorter edge and so on. After n 

folding procedures the corners of the resulting stack of paper sheets are cut off. By un-folding 

the paper, we will find that (for n > 1) a doily with holes has resulted. 

Find and explain a connection between the number n of folding procedures and the number 

A(n) of holes in the reopened paper. 

The uncertainty and complexity of problem oriented mathematics classes were to be made 

tangible and graspable in a number of different ways in the course of this seminar:  

 Students work on a mathematically comprehensive problem and are introduced to a 

number of different approaches within the group. 
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 In pairs, students plan a lesson on the doily-problem, exchanging ideas and view-

points, negotiating different options of designing the lesson, balancing the pros and 

cons of decisions. 

 As a group, the eight students get to know four different lesson designs on the same 

topic, possibly with very different conceptions, intentions and approaches.  

 Each tandem carries out a lesson plan in two fourth grade classes. They can observe 

which respective steps of the plan are carried out by the teacher, how pupils react, 

which questions, ideas, approaches they develop, how the teacher in turn reacts to 

these etc. In the following video-supported reflection of the class run by students in 

pairs, observations, intentions, considerations, questions, doubts… are addressed. 

 Finally, the tandems present, analyse and compare their experiences to and with the 

rest of the group, especially with regard to similarities and differences in their 

plans, implementations and results. 

The following table gives a summarised overview of the seminar course plan and explicit as-

signments regarding reflections in the journal. 

1
st
 group meeting 

Students are introduced to the doily-problem, they can work on it as long 

as they wish, but are also allowed to “take it home”. 

Work in pairs 
Further work on the doily-problem if necessary, while students may also 

use and refer to a text on its mathematical background. 

Reflection 

assignment 

Students are asked to think about the suitability of the doily-problem for 

a problem oriented mathematics class, which arguments speak for or 

against its use in a Year 4 class. 

2
nd

 group meet-

ing 

Students present their results and their approaches. 

Work in pairs 

Student tandems each attend lessons in two primary school classes with 

which they can work on the doily-problem later on. Afterwards, the tan-

dem plans such a lesson. 

3
rd

 group meeting  
Students present their thoughts regarding the appropriate design of a les-

son on the doily-problem to the group and discuss the options.
1
 

Work in pairs 
Using the discussions during group meetings as a starting point, the 

teams’ lesson designs are further elaborated and/or modified. 

Reflection 

assignment 

The participants are asked to 

 assess once more the suitability of the doily-problem for a problem 

oriented mathematics class in Year 4 and mention eventual changes in 

this regard; 

 think about what is of particular importance to them for their lesson; 

 designate the specific challenges they may possibly see for themselves 

with regard to the upcoming lesson they have planned.  

Work in pairs 
The doily-problem is used in eight fourth grade classes, observed by the 

respective tandem partner and video-recorded (by the lecturer). 

                                                 
1
 The session is audio-recorded. 
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Shortly after both tandem partners have given their planned lesson (often 

even on the same day), a meeting is held between the tandem and the 

lecturer during which they watch the video recordings of the lessons. 

The students are asked to talk about everything that is going through 

their heads. Occasionally, the lecturer encourages them to reflect on 

certain issues. In a final discussion, attention is directed at specific chal-

lenges during class, deviations from the original plan, particularly im-

portant decisions to be made by the teacher as well as observed similari-

ties and differences between the lessons taught by the tandem partners.
1 

Work in pairs 

The tandem partners prepare a short presentation for the following 

group meeting in which they summarise some important impressions and 

experiences, sections of their lessons, pupils’ results etc. 

4
th

 group meet-

ing.  

In the final group meeting, the tandems first of all present their teaching 

experiences, discuss similarities and differences as well as possible rea-

sons for them. Afterwards, the lecturer presents further variations of the 

lesson design. The group discuss their eventual implications on the fur-

ther progress of the lesson and possible outcomes.
1
 

Concluding 

discussion 

At the end of the course, the lecturer meets with every student individu-

ally for about 30 minutes to address and evaluate the newly gained ex-

periences.
1
 

Some Impressions of the practical seminar 

Due to the limited scope of this paper, I can only summarise some impressions that derive 

from my observations and analyses of the classes taught by the participating students, their 

plans and reflections as well as their journals and interviews. In order to illustrate my argu-

ment, I include selected quotations (partly tidied up for easier reading) of comments made by 

the students in their journals or from the audio-recordings. Some of the students’ considera-

tions may be critically questioned; I would however like to refrain from commenting them in 

detail or even assessing them at this point.  

What needs to be said first of all is that all participants were highly motivated and committed 

to the work at hand. For instance, they worked on the doily-problem for at least 60 minutes 

during the first meeting, even though it was planned as an open-ended session. All tandems 

made tables which often also showed the number of folding lines – differentiated by their ver-

tical/horizontal orientation – and the number of resulting sections in the sheet of paper. On 

this basis, they tried to determine the according arithmetic patterns. That duplications and 

powers of 2 played a role was frequently identified: three tandems looked for a multiplicative 

pattern, the other team tried to formulate a general relationship between the number of sec-

tions – that had been identified as powers of 2 – and the respective number of holes in the 

sheet of paper. 
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U
2
 made the following comment on the doily-problem in her journal: “After all this endless 

calculating, I started to resign and asked myself: How are Year 4 kids supposed to find a so-

lution to such a complex problem if even I can’t do it? … But later on I realized that it isn’t 

all that difficult to make a complicated mathematical problem suitable for children. You just 

have to simplify the problem and the solution you expect from them accordingly.” The second 

part of her statement already touches the question of whether the doily-problem is appropriate 

for mathematics classes in grade 4. Other participants also commented on this issue: 

R: “I think this problem is very suitable for use in classroom lessons, especially be-

cause it allows for many solutions on different levels and can be approached in a 

very practical way. … However, I don’t believe that a 45-minute period is enough 

to deal with the problem intensively – particularly considering that even we as stu-

dents already spent more than an hour on it.“ (Journal) 

L: “When I thought about this question [of suitability], my first thought was that this is 

too hard for primary school pupils because it was quite tricky even for us to solve, 

and especially this whole thinking in formulae is only really something for kids that 

are highly interested and mathematically gifted.“ (Journal) 

S: “… but if, for instance, you provide certain solution approaches or a table or give 

them a specific introduction into the process, almost every child can really – with 

appropriate assistance – understand and partly even solve this problem. That’s why 

I find it suitable, because it also demands quite a few own intellectual approaches. 

As far as I can remember, we never did something like this when I was at primary 

school.“ (Concluding discussion) 

K: “From my own experience I can say that you tend to underestimate the children’s 

capabilities far too often. You think that they are capable of much less than they ac-

tually are. But I think that this will teach us better.” (Journal) 

In the second group meeting, the tandems presented their approaches to the problem and some 

suggestions for solutions. The small size of the group contributed to an open and relaxed at-

mosphere in which also partial solutions and wrong ideas could be presented. As my students 

found the doily-problem to be very demanding, I had decided to show some selected results 

that had been developed by pupils in previous classroom experiments: The aim was to 

demonstrate that the problem can, in fact, also be solved by fourth graders, and in many dif-

ferent ways. 

On the basis of these experiences, each team prepared a draft for a teaching unit. The four 

teaching plans displayed numerous similarities: The first introductory part consisted of a prac-

tical exercise in which both pupils and teachers – comparable to their own introduction to the 

problem – went through several folding-and-cutting-procedures together. Every time before 

each sheet of paper was unfolded, the pupils were asked to make assumptions on what could 

                                                 
2 
The names of the participating students are abbreviated to their initials: tandem 1: L and R, tandem 2: K and U, 

tandem 3: G and S, tandem 4: H and N. 
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have happened. For the subsequent main part of the lesson, pupils were asked to work on the 

doily-problem in pairs or in teams, and the lesson was concluded by a presentation of the pu-

pils’ and partly also the students’ results. This points to one of many differences in the design 

of the teaching plans, which, of course, existed alongside the similarities: 

When formulating the goals and objectives of their lesson plan, for instance, the first tan-

dem also emphasized the geometrical aspects of the doily-problem: “All pupils realize 

that new holes appear where two folding lines intersect, that the number of vertical fold-

ing lines multiplied by the number of horizontal folding lines equals to the number of 

holes, that both horizontally and vertically there is always one folding line less than there 

are sections. Furthermore, pupils can see that the number of sections doubles with each 

new folding procedure and that this duplication alternates between the horizontal and 

vertical orientations.” (L & R, Journal)  

Also other details of the lesson plan placed special attention on geometrical elements, e.g. 

in already discussing folding edges, corners and sections during the introductory part of 

the lesson. Potential assistance for the group work phase was directed at determining the 

number of folding lines, the location of (new) holes in the sheet of paper or the appear-

ance of the unfolded sheet.  

For the first collective exercise of folding and cutting the sheet of paper, it was important 

to K and U to not only ask their pupils about their assumptions regarding the number of 

holes, but also for the reasons behind these assumptions. How important a „graspable“ 

result was to the second tandem can also be seen in their first draft for the lesson, in 

which about one third of the time available was dedicated to the presentation of the re-

sults, including a comprehensive presentation of their own solution that they prepared. 

The most important goal of the lesson for tandem partners H and N was for their pupils to 

be able to calculate the number of holes by the end of the lesson. Already their introduc-

tion to the problem thus included giving their pupils a prepared table and filling out the 

first few rows together. They also told the children about a character called Mathematicus 

who already knows from the very beginning that if you fold the sheet of paper seven 

times and cut the edges accordingly, a total number of 105 holes will appear. The chil-

dren’s task is to get on to his track (H & N, Journal). 

G and S set great value upon motivating their pupils. For this reason, they want to work 

with a stuffed toy called Billy the Beaver, who loves to do handicrafts but needs the chil-

dren’s help to solve the doily-problem. They can help him find out “whether or how the 

number of foldings is related to the number of holes” (G & S, Journal). 
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Other students also found that designing a motivating introduction was an important challenge 

in the preparation of their lesson, apart from time management and considerations regarding 

the appropriate assistance of pupils they hardly knew. S’s concluding remarks on planning the 

teaching unit are: “Well, because that was really complex somehow. You kept remembering 

one or the other thing that you may have forgotten or that you could also… Then you thought, 

now we’re done, but then we realized that we still needed some little cards, or hadn’t decided 

on what kind of sheets of paper we wanted to use, and how we’d introduce the problem to the 

kids …” (Concluding discussion) 

Reflections of teacher students 

All students perceived the lessons to be particularly demanding; it was, above all, not easy to 

interpret the frequently different working processes of pupils, react quickly but appropriately 

to all classroom situations and, in doing so, parting from one’s own plans.  

R: “It is extremely difficult in the beginning, you still try really hard to follow it [your 

teaching plan] exactly the way you wrote it down, … it’s my goal to put my plan 

into action in the best possible way. But sometimes it’s actually much better to di-

vert from it and go down a different track, and realize that at this and this point it’s 

necessary to divert from my plan and do something else. But in the beginning, I 

think, that’s still really hard to do.“ (Concluding discussion) 

U: “The lesson I was able to draw from this class overall was that I still have to learn 

to concentrate on so many kids at the same time. For example, I let a couple of 

really good ideas presented by the pupils slip through my fingers that I could and 

should have encouraged and developed further.” (Journal) 

 “I think my greatest challenge was to react to situations that I didn’t anticipate, that 

I didn’t prepare myself for, that I didn’t imagine possible beforehand.” (Concluding 

discussion) 

S: “I guess such a lesson is especially difficult because you have to understand what 

these kids mean so quickly and if what they say is correct.” (Note by the author) 

“And then to really respond to each of them… and then also to react so quickly…“ 

(Concluding discussion) 

Reviewing the video-recordings of the lessons in tandems and presenting and discussing the 

students’ experiences in the group (4
th

 group meeting) make it possible to compare their plans 

and implementations as well as pupils’ work processes and results. Here, students address a 

large part of the possible variations; mathematical and cognitive aspects, however, play a mi-

nor role. 

N: “And that there are many different ways of making a topic appealing and interest-

ing in various manners, with different goals, different approaches.” (4
th

 group meet-

ing) 
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K: “I wouldn’t have thought that the differences are really that striking, that other 

classes find out more, progress further… But maybe it also depends on the plans we 

made and of course also on the classes themselves, they were totally different from 

each other… That was really fascinating to see.” (Concluding discussion) 

The concluding one-on-one conversations clearly showed that the participating students had 

acquired new and (in my opinion) important experiences in problem oriented mathematics 

teaching: 

R: “What I learned for myself, what I still have to learn, is to hold myself back… You 

really have to learn to hold your horses a little as well and let the kids go ahead with 

their ideas.” (Concluding discussion) 

 “And this practical experience in particular, that it can actually really work in prac-

tice …“ (Concluding discussion) 

G: “…that you can just do it, that you can trust the children to do it, that you can have 

the confidence that they are capable of finding their own ways, that you shouldn’t 

underestimate them.“ (Concluding discussion) 

S: “First of all: you should have confidence in these kids… I have learned that this al-

so works, that you can also achieve it that way. Then, the complexity of such a les-

son, especially problem oriented, if you have to prepare it and… that sometimes 

things don’t quite go according to plan or that you don’t always immediately have 

an answer up your sleeve.” (Concluding discussion) 

Finally, the students were asked to comment on the statement “Teaching is to act and decide 

in complex and uncertain situations“: 

R: “Well, this is something I really noticed about my lesson: It’s first of all really 

complex, it’s really difficult to assess, especially because we didn’t know the class 

beforehand. But I think that even if you do know the class it can be really tricky at 

times to decide somehow what would be the right move at the right time. And also 

the dynamics as well… And you constantly have to readjust to the changing situa-

tions. So our preparations, in the beginning, they really helped, but at the end of the 

day, in the concrete situation, you actually do have to deviate from the original plan 

sometimes and make other decisions.” (Concluding discussion) 

K: “… you can make plans and prepare yourself, but at the same time you have to be 

flexible as well. That is probably the most difficult competency to develop for a 

teacher, that you’re ultimately flexible concerning your plan and that you bring the 

plan in line with your pupils. I think this requires the most practice of all.” (Con-

cluding discussion) 

U: “Classroom teaching is simply an interaction that you can never be 100 per cent 

prepared for. You would have to prepare for every kind of possible situation, 

which, of course, you can’t. There can always be things you aren’t prepared for.” 

(Concluding discussion) 

G: “… sometimes it really comes down to one decision that you make, and the ripple 

effect from this decision affects the lesson in a way that you perhaps aren’t able to 

predict beforehand.” (Concluding discussion) 

S: “I think that’s one thing you also saw on the video, that when you’re teaching in 

class it’s like you’re – not under pressure to act, but you have to react at once, … 
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you really have to do something immediately and decide on the spot. And that is 

complex, of course, because there are so many different possibilities. And that’s 

why, I think, it’s important that you don’t always stick to the same pattern and base 

your decisions on that, but that you always have several alternatives up your sleeve. 

It is hard, I believe, once you’ve developed a routine over the years to still think of 

alternatives, what would have been another way of doing it and not always system-

atically follow your one fixed plan. And uncertainty is always part of the deal. It 

also depends on the kids, on the class, on the problems, sometimes maybe even on 

how you personally feel on the day – or … But I guess that’s part of being a teacher 

… you always deal with situations that are uncertain and indeterminable.” (Con-

cluding discussion) 

Discussion 

The reported seminar seems to be an effective possibility for prompting teacher students to 

challenge their conceptions on problem oriented mathematics teaching. Nevertheless, several 

critical questions arise. One could ask, for instance, whether students with very little teaching 

experience are actually a suitable target group. Teaching primary school children in class def-

initely placed the students in a special and also psychologically challenging situation. On the 

other hand, it might just be particularly beneficial to deal with and question one’s previously 

developed conceptions of (problem oriented) mathematics teaching at a very early stage of 

university education. 

Given the students’ limited previous experience, integrating a more theory-focused unit into 

the seminar (on e.g. different movements in the didactics of mathematics) might seem appro-

priate before commencing work on classroom experiments and teaching plans. This would, 

however, probably have obscured the students’ own conceptions of problem oriented mathe-

matics teaching. In this context, R remarked that “the lecturer’s decision to run the seminar 

without an introduction to problem oriented mathematics teaching made it more demanding 

for the students, but also opened up more opportunities to learn.” (Journal) 

So what were the learning effects for the students – given that they received no theoretical in-

put and prepared only one single lesson? In my opinion, the students’ impressions and reflec-

tions that have been compiled in the previous section of this paper clearly illustrate, amongst 

other things, that they have become aware of a number of different issues: They have been in-

troduced to a new, challenging mathematical problem and have seen that it is (nonetheless) 

suitable for a regular primary school class, they have realized how many different possibilities 

there are to design a lesson unit on the same topic without determining an ideal outcome, that 

a similar approach in different classes can lead to very different results, that problem oriented 

mathematics teaching requires good preparation but can take very unexpected and surprising 
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turns in class all the same, and that it places specific demands on the teacher. Conceptions on 

problem oriented mathematics teaching were also challenged, in my opinion. G writes, for in-

stance: “This seminar has essentially contributed to the fact that I look at the issue of ‘prob-

lem oriented teaching’ with much less skepticism than before. Before, I always asked myself 

whether you should allow pupils to work so independently, but the class I ran on my own, and 

also the other teams’ classes, clearly proved that it works. Pupils are often underestimated in 

their ability to work with difficult concepts, and this is why you often use a well-established 

and well-known pattern that you want them to apply instead of letting them experience for 

themselves and explore the problem on their own.“ (Journal) 

The variety of different plans for the teaching unit, and the corresponding approaches taken 

by the pupils to solve the problem, would probably have been larger if there had been no col-

lective introduction for the students into the doily-problem (i.e. group session of folding, cut-

ting, assuming, unfolding), or if possible variations of the lesson (e.g. regarding the formula-

tion of problem statements and work assignments) are brought up in group discussions early 

on in the process. Yet, this would probably also have made it more difficult to comprehend 

the problem and its stimulative nature would have been less apparent; on the whole, “access-

ing” the subject would have been much more tedious for the students. Giving them a ready-to-

use “toolkit” of various „modules“ they can use for planning their lesson would likely have 

distracted them from their own ideas, their own conceptions and perhaps even taken too much 

work out of their hands. Asked about this issue, K replied: “More input? I don’t really think 

so. Essentially, it’s not only problem oriented for the kids but also for us, i.e. that we have to 

figure it out. Actually, I believe that giving us less advice and clues made us think about it 

more thoroughly. … This way, we had to think about it ourselves. I think that was actually 

quite OK.“ (Concluding discussion) 

K’s comment suggests a certain self-reference: the seminar on problem oriented mathematics 

teaching was deliberately designed to be problem oriented for the teacher students. It was also 

self-referential for the lecturer, though. The deliberations of this section show that already the 

attempt of making (at least aspects of) the complex reality of problem oriented mathematics 

teaching tangible to students, encouraging and animating them to reflect their experiences 

and, in doing so, sensitizing them a little bit for this complexity, is complex in itself. 
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Abstract 

During the whole time of school students are confronted with measurements like 

monetary value, linear measure, measure of weight, measure of time etc. Usually 

the size of these measurements are within normal ranges. But since grade five the 

pupils also come up against with very small as well as very big sizes. One field of 

huge measurements is that within astronomy. To get an outlook and imagination 

of such measurements and for better memorization of facts one has to find rela-

tions between different sizes, correlations with other types of measurement and 

special representations. In this presentation besides some facts we will look out 

for getting relations and representations about linear measures in the near of the 

earth, within our planetary system and within the whole universe.  

Key words: problem field, astronomical measurements, representations of distances  

ZDM classification: D53, D59, D83, M53, M59. 

 

Introduction 

Since first grade children of primary school are confronted with different measurements like 

monetary value, linear measure, measure of weight, measure of time, etc. But the size of the 

measurements range within body measures or measures of normal environment. For example 

children learn to get an imagination of distances of “1 mm” (e.g. with the thickness of a 1 cent 

coin as main representative), “1 cm” (thickness of a thumb), “1 dm” (spread of open hand), “1 

m” (one big footstep), “1 km” (perhaps the walking distance from home to school) and may 

be also of “10 km” (spread of a small town) and “100 km” (distance to the next big city). 

Since grade five the pupils also come up against with smaller and bigger sizes like “1 m” 

and “1000 km” or “10 000 km” and computing with translations of scales. But with bigger 

distances e.g. we all have problems of imagination. 

“Man is the measurement of all” Protagoras did say about 2500 years ago. This is true still to-

day for normal life. But we also today have to do with things outside of the all-day experienc-

es. States have to compute with huge amounts of money, rackets have huge velocities and we 

hear of huge distances in the space.  
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To get an outlook and imagination of such measurements and for better memorization of facts 

one has to find relations between different sizes, to detect correlations between different rang-

es and types of measurement and discover special representations of huge measurements. 

How this can be done I will discuss on the field of huge measurements – especially linear 

measures - within astronomy. This is a problem field with a lot of different aspects and in the 

given frame I can only present some information on main points.  

Pupils can find many possibilities for creative work and own decisions in this problem field 

and can make investigations (within astronomy as well mathematics). They also in the begin-

ning have to structure the whole problem field. Most information the pupils as well as the 

teachers can find in books and in the internet. But didactical literature in respect to this theme 

except some special aspects for higher grades you can find hardly. 

 

For this presentation I structured the problem field of linear measures within the astronomy in 

three domains: The astronomical neighborhood of our earth (the atmosphere and the satellites 

as well as the moon), our planetary system (sun and the planets from Mercury to Neptune as 

well as the outer sphere of our sun system with comets etc.) and the whole universe (with 

some stars nearer to the sun, our galaxy, other galaxies, clusters of galaxies and the end of the 

visible universe). 

The astronomical neighbourhood of our earth 

We start with our earth and its satellites. I first present some facts pupils for example can find 

in the internet or in special books: 

- Radius of the earth is 6 370 km so that the mean diameter of the earth is 12 740 km 

[polar-diameter 12756 km and equatorial diameter 12714 km] 

- Height of atmosphere (from ocean level) is  

for the troposphere 7 km to 17 km,  

for the stratosphere until about 50 km and  

for the mesosphere until about 85 km.  

The thermosphere and exosphere (were nearly no air exists) is estimated until 10.000 km. 

- Low Earth Orbit (LEO) satellites circle in a height (measured from ocean level) of 200 

km to 1 500 km. They need 1.5 – 2 hour for one cycle. The ISS for example circles in 

about 400 km height and needs 90 minutes for one cycle. 
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- Medium Earth Orbit (MEO) satellites circle in a height of 6 000 km – 36 000 km. GPS-

satellites or Navigation-satellites like Galileo circle in a height of about 20 000 km 

respectively 32 000 km.  

- Geostationary Orbit (GEO) satellites circle in a height of 35 790 km. Their cycle time is 

exact 24 hours so that they have the same movement like the earth and keep staying above 

a fixed point of the earth. The telecommunication satellites like Astra, Eutelsat, Immarsat 

and the metrological satellite Meteosat stand in this height. 

- The average radius of the orbit of the moon is 384 400 km (363 300 km – 405 500 km) 

 

To get an imagination of these distances we look out for different scales to put the distances 

on. The pupils first may try to let the earth look like a coin (e.g. a 1 Euro-coin with diameter 

of 2.3 cm). This leads to a scale of about 1 : 554 000 000 or better rounded down  1 : 500 

Mill. Then we have the  

 diameter of the earth about  2.55 cm 

 mean thickness of the troposphere about  0.0024 cm (≈ 1/40 mm) 

 thickness of the atmosphere up to the mesosphere a bit more  than  0.017 cm (≈ 1/6 

mm like the skin of an apple)  

 ISS (with orbit radius 400 km above earth’s surface)  0.08 cm (≈ 1 mm) 

 geostationary satellites (with 35 790 km above earth’s surface) 7.16 cm  

 moon orbit with range from 73 cm to 81 cm.  

The pupils will find out that this scale is not a good one for the atmosphere and the LEO-

satellites but it shows already some relations between the radius of the earth, the thickness of 

the atmosphere and the height of satellite orbits as well as the moon orbit.  

 

A better scale might be then the earth big like a ball or a terrestrial globe so that we set 25 cm 

 12 500 km  with the scale  1 : 50 Million. Then we  have the   

 diameter of the earth  25,5 cm  

 thickness of troposphere and stratosphere 0.1 cm (1 mm) 

 height of the ISS is  0.8 cm (8 mm) 

 height of GPS-satellites is 40 cm  

 height of geostationary satellites is 71.6 cm 

 radius of the moon orbit between 727 cm and 811 cm  (≈ 77 m). 
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With these representations we already can visualize the relations between the named linear 

measures. To deepen this we can compute some quotients and e.g. get the following 

representation:  

 

 mean thickness of the troposphere  
∙ 4  

> thickness of troposphere plus stratosphere 
∙ 200

> 
distance from earth’s surface to end of the exosphere    

 

 mean thickness of the troposphere 
∙ 1 000 

>  diameter of earth  
∙ 30 

> radius of moon orbit 

                               ∙ 30 000 
                                

 

 height of ISS    
∙ 50 

>    height of GPS-satellites  
∙ 1.8 

> height of geostationary satellites  

                             ∙ 90 
If we want to put the earth until the geostationary satellites (with only half earth circle) on a 

DIN A4 paper in oblong format then we can use a scale 1 : 150 Mill. whereat the radius of the 

earth becomes about 4 cm, the thickness of the atmosphere until the stratosphere ⅓ mm and 

the distance from the midpoint of the earth to a geostationary satellite 28.1 cm.  

To get all above distances (devoid of the radius of the moon orbit) in an upright format we can 

use the scale with 1 : 330 Mill. so that (as in the following figure) the  

 diameter of the earth is  3.86 cm 

 thickness of troposphere and stratosphere is 0.015 cm (≈ 1/7 mm) 

 height of the ISS is  0.121 cm (≈ 1/9 mm) 

 height of GPS-satellites is  6.1 cm  

 height of geostationary satellites is  10.85 cm. 

 
 

On the sports field of the school we can represent this with a scale like 1 : 500 000, i.e. 

  the earth is represented as circle with diameter  2548 cm (25 m 48 cm)  

 The mean thickness of the troposphere is  2.4 cm  

 the thickness of troposphere plus stratosphere is  10 cm  

 the distance (from the earth ground level) to the ISS is  80 cm 

 the distance (from the earth ground level) to GPS-satellites is  4000 cm (40 m) 
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 the distance (from the earth ground level) to geostationary sat. is  7158 cm (71.58 m) 

 The distance from midpoint of the earth to a geostationary sat. is  8432 cm (≈ 84.3 m) 

 

Another way of getting an impression of these distances the pupils can find by driving with an 

“imaginary” car with a constant speed of 100 km/h. This is a speed we know from driving on 

a motor way. From earth ground we then would need 

 to the end of the troposphere not more than 10 minutes  

 to the end of the stratosphere 30 minutes  

 to the ISS 4 hours  

 to GPS-satellites 8 days and 8 hours  

 to a geostationary satellites 14 days and 22 hours 

 to the moon on a straight way about 160 days. 

 

If you take a supersonic transport (like the Concorde) with 2000 km/h then the above times 

have to be divided by twenty. For example to get to the stationary satellites you need already a 

little bit less than a half day.  

 

A rocket with constant speed of 20 000 km/h would need   

 to the end of the troposphere not more than  3 seconds  

 to the end of the stratosphere  9 seconds   

 to the ISS  1 minute and 12 seconds  

 to GPS-satellites 1 hour  

 to a geostationary satellites about  1¾ hours  

 to the moon on a straight way about 19 hours. 

 

By finding out and putting down all these named representations and by building quotients 

between the named distances the pupils will get a better imagination of these different dis-

tances.  

Our planetary system 

After the first experience with astronomical distances we turn towards our solar system with 

its planets. This is a theme that appears very often in school, for instance in grade five at ge-

ography. Then (but also at other times) it is good to pick up this theme in mathematics to 

deepen the imagination of the distances in our planetary system. 

 

Let us start again with data the pupils can find in books or in the internet: 
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 Sun:  Radius 696 000 km, weight about 2∙10
30

 kg, density 1.41 g/cm³ 

 Earth: Radius 6370 km, weight about 6∙10
24

 kg, density 5.51 g/cm³ 

 Moon: Radius 1738 km, weight about 7⅓∙10
22

 kg, density 3,34 g/cm³ 

 

For the planets we e.g. can find the following information: 

 

Planet      Radius             distance to the sun  time of circulation 

Mercury     2 439 km        58  Mill. km       87.9  days 

Venus       6 052 km      108  Mill. km      224.5  days 

Earth      6 370 km      149.6 Mill. km    about   365¼  days  

Mars      3 397 km       228 Mill. km        1.88  years               

Jupiter   71 398 km       778 Mill. km      11.84  years 

Saturn      60 000 km    1 432 Mill. km                 29.43  years 

Uranus    25 400 km    2 884 Mill. km                 84.18  years 

Neptune   24 300 km    4 509 Mill. km               164.56  years 

 

We now may start with looking out for scaling the named radii and start with such a scale that 

the circle of the sun is going on a normal sheet of paper with width of 21 cm. If we take 1cm 

for 100 000 km the diameter of the sun is 13,92 cm. Multiplying this with 1.5 we get 20.88 

cm, i.e. nearly 21 cm. Thus we have the scale 1,5 cm  100 000 km = 10 000 000 000 cm, 

i.e. 1 : 6 666 666 667 (= ⅔ ∙ 10 Bill.). With this we can get the circles of the sun and the plan-

ets on a DIN  4 paper (without correct distances) by following scaled diameters: 

 

Sun      Mercury       Venus  Earth    

208.8 mm     0.7 mm      1.8 mm          1.9 mm      

 

Mars  Jupiter     Saturn        Uranus            Neptune 

1.0 mm 21.4 mm    18.0 mm       7.6 mm  7.3 mm 

 

This shows that with this scale Mercury and Mars have a diameter of nearly 1 mm, Venus and 

Earth of nearly 2 mm, Uranus and Neptune of nearly 7 mm and Jupiter and Saturn lay in the 

near of  2 cm. All these measures we just can put on our paper.  

 

If we use this scale for the distances to the sun then the planet farthest away from the sun, the 

Neptune, will lay about 676 m away. This is not a good scale for sheets of paper and even not 

on the school yard. The sports field of a school often has a length of about 100 m. To get the 

distance of Neptune – Sun on it we should minimize the length of 676 m by 7. A better scale 
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we will get if we multiply the scale with 7.5 instead of 7. Thus in the next step we will use the 

scale 1 : 50 Bill. [Remark: 1 Bill. = 1 000 000 000 and is called in some countries 1 Millard.] 

Then we have: 

     diameter                 distance to the sun 

Sun        27.8 mm      - 

Mercury         0.1 mm  (very small point)              1.16 m        

Venus           0.2 mm  (small point)             2.16 m 

Earth          0.3 mm (normal point)             2.99 m            

Mars          0.1 mm (very small point)         4.56 m                 

Jupiter         2.9 mm (very thick point)       15.56 m      

Saturn                 2.4 mm (very thick point)                 28.64 m 

Uranus          1.0 mm (thick point)            57.77 m                 

Neptune         1.0 mm (thick point)        90.18 m     

To get these distance on our paper we have to use the scale 1 : 25 Trill.  ( =  25 ∙ 10
12

 ). 

 

Another possibility to get an impression of these distances is to look out for a planet path and 

to walk on such path.  In Bielefeld in 2003 for example students of a middle school planed 

and built such a planet path starting at their school. 
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You can find several such planet paths in Germany and presumably also in other countries.  

The scales are mostly  1 : 1 Bill.  or  1 : 1.5 Bill.  or  1 : 2 Bill. That one in Bielefeld has the 

scale named in the middle. 

For the scale 1 : 1.5 Bill. (1 : 1 500 000 000) we have: 

            diameter                   distance to the sun 

Sun           92.67 cm    - 

Mercury             3.3 mm               38.7 m        

Venus               8.1 mm             72.0 m 

Earth              8.5 mm             99.8 m            

Mars              4.5 mm                 152.0 m                 

Jupiter           95.2 mm            518.7 m      

Saturn                     80.0 mm                     954.7 m 

Uranus            33.9 mm        1 922.7 m                 

Neptune          32.4 mm              3 006.0 m  

 

In addition: Some larger distances of our solar system (“trans-neptune-objects”) 

First in the so-called Kupier-Belt we find dwarf planets like Pluto (in elderly books it is 

named a planet but since 2006 it is a dwarf planet which has characteristics of a planet as well 

as a comet). Pluto’s distance to the sun is about 5 900 Mill. km (in our scale about 3 933 m).  

In the next sphere of our solar system, the so-called Helio sphere - where the magnetic field of 

the sun begins to interact with interstellar media - we can find comets like Hale-Bopp with a 

distance of about 55.6 Bill. km (in our scale about 37 km) or the dwarf planet Sedna with a 

distance of about 75 Bill. km (in our scale 50 km) to the sun.  

Some people say that the solar system does end here. But latterly some scientist say that the 

solar system ends much more farer with the so-called Oort cloud whose radius in respect to 
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the sun is about 15 Trill. km (in our scale 1 000 km). 

 

The distances of Hale-Bopp and Sedna and all the more the distance to the end of the Oort 

cloud can not be represented in a planet path. But by looking up these in the internet and 

translating them to our scale we get an imagination about the range of our solar system and 

the gravitation force of the sun. 

Interesting in this connection might be also the time the Voyager 1 satellite (the today fur-

thest away satellite which just now is outgoing of the sun system) took to go into these dis-

tances:   

- Start from Earth  Sept. 1977  

- Passage of Jupiter  1 ½ year later (March 1979) 

- Passage of Saturn again about  3 years after start  (Nov. 1980)  

- Begin of interstellar mission about 13 year after start (1990) 

- Going into Heliosphere 28 years after start (2005) 

- Distance today (after 36 years) about 20 Bill. km. 

The present speed of Voyager 1 is 61 380 km/h, so that its distance from sun increases about 

540 Mill. km per year. 

 

Up from the distances of the end of the solar system astronomers use another unit of length, 

the so-called light year (lj). It is the length a light ray (or any electro-magnetic wave) goes in 

a  Julian year of 365.25 days. It is equal to 9 460 730 472 580 800 m ≈ 9.46 ∙ 10
12

 km =  9.46 ∙ 

10
15

 m ≈ 10
16

 m).  This says that the light from the sun needs about 1 year to get to the end of 

the solar system.  

Sometimes one uses also the units of a light hour, a light minute or a light second at which     

1 light hour  ≈ 10
12

 m, 1 light minute ≈ 1.8∙10
10

 m  and  1 light second  ≈ 3∙10
8
 m. A good 

small problem field for the pupils in this connection is that of getting exact computations 

about theses distances. But we also can compute with our given distances how long light or 

radio signals do need for the considered distance. 

 

This leads us to another way of comparing the distances within the solar system: We look out 

for the time light or radio signals do need for several distances. So e.g.  

 the light  from sun to earth needs 8⅓ minutes  

 the light  from sun to Neptune needs a little bit more than 4 hours.   

 a laser beam from earth to the  moon takes a little bit more than 1 second  
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 the radio signal from the satellite on Mars to earth (with distance to the earth between 56 

and 400 Mill. km – at present about 250 Mill. km) takes currently about 14 minutes. 

 And a radio signal from Voyager 1 to earth requires about 12 hours.    

 

With all these given or computed data and descriptions one can get an imagination of the 

distances within our solar system. Of course there are other possibilities to deepen this 

(especially by looking out for other scales) or to fill up with new details (for example about 

asteroids and comets).  For instance from the assumedly oldest big asteroid Fester which has a 

500 km diameter we just got wonderful pictures from a satellite that circled this asteroid (see: 

http://de.wikipedia.org/wiki/Dawn_%28Raumsonde%29). More information from many 

asteroids and comets one can get from the internet. 

The whole universe 

But now we will leave our solar system and look out for stars and galaxies in the universe. A 

good introduction to distances in the universe is looking at a movie called “Powers to ten” 

made by Charles and Ray Eames in 1977 (see: www.youtube.com/watch?v=0fKBhvDjuy0  or 

google “Powers of ten”). It gives an imaginary journey from the earth to the furthest away 

quasars with a logarithmic scale using the powers of ten from 1 m to 10
26

 m (≈ 10 Bill. light 

years). 

One has to watch this film several times to get out most of the information and fix them on a 

paper. Also it is good to complete this information with others in the internet (e.g. 

http://www. powersof10.com/ or https://en.wikipedia.org/ wiki/Quasar) and in books (like 

“Powers of Ten: A Book About the Relative Size of Things in the Universe and the Effect of 

Adding another Zero” (1982,1994), by Philip and Phylis Morrison or “An Introduction to 

Modern Astrophysics”, by Carroll and Ostlie, 2007). 

 

But after sampling the information we should work with the information. And at first we can 

rediscover our measures of our solar system whereat we have to transpose all measures in 

powers of ten with m as base item, so that we get e.g. 

 

Distance  Earth – Moon  3.8 ∙ 10
8
 m  (± 6.6 %) 

Distance  Earth – Sun     1.5 ∙ 10
11

 m  (± 1.6 %) 

      (The exact mean length of 149 597 870 700 m is called 1 au, i.e. 1 astronomic unit) 

Distance  Jupiter – Sun  7.8 ∙ 10
11

 m (≈ 5¼ au)  

http://de.wikipedia.org/wiki/Charles_Eames
http://de.wikipedia.org/wiki/Ray_Eames
http://www.youtube.com/watch?v=0fKBhvDjuy0
https://en.wikipedia.org/%20wiki/Quasar
http://en.wikipedia.org/wiki/Philip_Morrison
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Distance  Saturn – Sun   1.4 ∙ 10
12

 m (≈ 9⅓ au) 

Distance  Neptune – Sun  4.5 ∙ 10
12

 m (≈ 30 au) 

Distance of Voyager 1 - Sun    1.9 ∙ 10
13

 m (≈ 125 au) 

Distance End of solar system – Sun about 1.5 ∙ 10
16

 m (≈ 100 000 au) 

A little bit outside of our solar system we find the nearest stars (seen in an approximate dis-

tance from the earth). 

 

Proxima Centauri:  4 ∙ 10
16

 m   (≈  4.2  light years) 

Alpha Centauri:      4 ∙ 10
16

 m   (≈  4.3  light years) 

Sirius:              8 ∙ 10
16

 m   (≈  8.6  light years) 

Ross 248:          9.8 ∙ 10
16

 m   (≈ 10.3  light years) 

         (Ross 248 is a red dwarf star. Voyager 2 is going in its direction and might arrive there 

in  

          40 000 years – see: http://www.marspages.eu/index.php?page=592) 

 

Within the next three powers of ten there are several stars but mostly isolated and in the 

named movie it was told that the picture always is the same: several sparkling point. The 

amount of lucent point rises up in the next power of ten when we reach the disk of our galaxy. 

One also can discuss how long a “prospective rocket” with speed similar to speed of light 

would need to reach such stars. Some distances within our galaxy we will fix. 

 

Pollux (in Gemini):     3 ∙ 10
17

 m   (≈  34  light years) 

Schedir (in Cassiopeia):    2 ∙ 10
18

 m   (≈  230  light years) 

Polar star:      4 ∙ 10
18

 m   (≈  430  light years) 

Antares (in Skorpius):           5.7 ∙ 10
18

 m   (≈  600  light years) 

Beteugeuze (in Orion):      6 ∙ 10
18

 m   (≈  680  light years) 

Canis Majoris (very big):     4.6 ∙ 10
19

 m   (≈  4 900  light years)  

Super novo from 1604:  1.9 ∙ 10
20

 m   (≈  20 000  light years) 

Center of our galaxy:  2.5 ∙ 10
20

 m   (≈  26 000  light years) 

 

And outside of our milky way galaxy we find other galaxies and clusters of galaxies as well 

as super clusters of galaxies.  Here are only a few examples with their distance to the earth: 

 

Conis major (nearest galaxy):          ≈     4 ∙ 10
20

 m   (≈  42 000  light years) 

http://www.marspages.eu/index.php?page=592
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Andomeda galaxy:           ≈  2.4 ∙ 10
22

 m   (≈  2.5 Mill.  light years) 

Centaurus A (nearest radio galaxy):      ≈     1 ∙ 10
23

 m   (≈  10 Mill.  light years) 

Virgo galaxy cluster (in the mean):     ≈  6.5 ∙ 10
23

 m  (≈   65 Mill.  light years) 

Quasar (quasi stellar object) Mark 509:  ≈  4.1 ∙ 10
24

 m  (≈  440 Mill.  light years) 

Quasar High Red Shift:   ≈  1.1 ∙ 10
26

 m  (≈ 12 Bill. light years) 

Furthest away galaxy (known today):   ≈  1.2 ∙ 10
26

 m  (≈ 13 Bill.  light years) 

[see e.g.  http://www.welt.de/wissenschaft/weltraum/article10428102/ 

               Astronomen-erreichen-das-Ende-des-Universums.html ] 

 

In addition to these data of astronomic distances metered from the earth or the sun we can 

take data about diameters from  several  astronomic objects: 

 

Diameter of the moon:   ≈  3.5 ∙ 10
6
 m  

Diameter of the earth:   ≈  1.3 ∙ 10
7
 m 

Diameter of Jupiter:    ≈  1.4 ∙ 10
8
 m 

Diameter of the sun:    ≈  1.4 ∙ 10
9
 m 

Diameter of Pollux:    ≈  1.3 ∙ 10
10

 m  

Diameter of  Antares:   ≈  2.5 ∙ 10
11

 m  

Diameter of  Beteigeuze:   ≈  1.4 ∙ 10
12

 m  

Diameter of Canis Majoris:   ≈  2.0 ∙ 10
12

 m  

Major Diameter of comet halley:   ≈  5.3 ∙ 10
12

 m  

Diameter of the heliosphere:  ≈  2.3 ∙ 10
13

 m 

Diameter of the whole solar system: ≈ 3.0 ∙ 10
16

 m (3.2  light years) 

Diameter of our galaxy:      ≈ 1 ∙ 10
21

 m  (100 000  light years) 

Diameter of a cluster of galaxies:  ≈ 1 ∙ 10
23

 m  (10 Mill. light years) 

Diameter of a galaxy-supercluster:  ≈ 2 ∙ 10
24

 m  (200 Mill. light years) 

Diameter of the whole universe:  ≈ 1.3 ∙ 10
26

 m (14 Bill. light years). 

(observable farthest object)  

 

Besides looking at the powers of ten the pupils also should calculate quotients between some 

distances so that they e.g. can find out that the distances to the nearest stars Proxima Centauri 

and Alpha Centauri is about 100 000 times of the distance from Earth to the sun and that the 

distance to the center of our galaxy is 10 000 times bigger than the distance to the Centauris 

and so on.  

So we can find e.g. (including also the named diameters):  

http://www.welt.de/wissenschaft/weltraum/article10428102/
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Sun-Earth  
∙ 100 000 

>  Sun-Centauri 
∙ 10 000 

> Sun-Milkyway center 
∙ 1 Mill. 

>  end of the universe 
 

Diameter of moon   
∙ 3.6 

>  diameter of earth 
∙ 11  

>  diameter of Jupiter 
∙ 9.7 

> diameter of sun 
       ∙ 109 

                               
 ∙ 400

 

 

Diameter of sun   
∙ 11 

>  diameter of Pollux 
∙ 19 

>  diameter of Antares 
∙ 8  

>  diameter of Canis 

    ∙ 1500 
 
[The star Canis Majoris with its big diameter  in the position of our sun would reach beyond Saturn.] 

 
 

Diameter of the heliosphere  
∙ 43 Mill. 

>  diameter of our galaxy 
∙ 70 000 

>   diameter of universe  
             ∙ 3 Trillion 
 
 

I think it is very difficult not only for pupils to get an imagination of all these distances. Also 

a journey with a very fast rocket does it not make better because even with the fastest speed, 

the speed of light, we have a range from one light year in our solar system to millions of light 

years. There is no proportional scale we can put on these distances.  We only can produce a 

logarithmic scale in the style of the movie “Powers of Ten”. 

In such a scale (as to be seen in the following – but better one uses a scale with a length of 

about 55 cm) the pupils can put in all the data we got before. This might deepen the 

recognition of the data.  

 

 

Final comment 

Above all named and possible investigations about astronomic distances one also can look out 

for numbers of stars one can see in the night without clouds, the estimated number of stars or 

galaxies in the universe, the amount of visible and dark material in the universe or the mass of 

different astronomic objects. But here I will end with the given ideas about investigating 

astronomic measures.  
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Historical aspects in teaching mathematics 
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Abstract 

In our school practice it is very important to work out mathematical problem 

fields for secondary school pupils. We have to arouse the pupils’ interest in the 

classroom too. There is growing debate concerning the role of the history of 

mathematics in mathematics education. Nowadays the new Hungarian mathemat-

ics curriculum (NAT) emphasizes the role of history, so we have chosen the topic 

of the problem field from the history of mathematics, from the geometry of trian-

gles: Viviani’s theorem and its generalizations.  

We wanted to acquaint our pupils with famous mathematicians (V. Viviani, L. J. 

Mordell, P. Erdős) and with their mathematical works and results. 

On the one hand our main point was to enrich the teaching of mathematics with 

historical aspects; on the other hand we focused our teaching on the pupils’ own 

heuristic work. We formulated the posed problems as open problems. So pupils 

can create their own mathematical ideas, similarly to the historical way. They did 

their problem solving as a research work. We carried out our experiments using 

the traditional way and by using modern techniques (GeoGebra).  

We developed this teaching material for pupils of normal secondary schools (Part 

I -II.), for students with high ability (Part III- VIII.) and for teachers as guideline. 

We tested it in five secondary schools (normal and special courses). We applied it 

on the teacher training track at the university on semester courses (Chapters of 

Teaching Mathematics), and in-service training of mathematics teachers.  Mathe-

matics teachers can benefit from it. 

Key words: history of mathematics, teaching of mathematics, material for teaching, Viviani’s 

theorem, problemfield  

ZDM classification: A30, C30, G10  

 

Aims by using historical aspects 

Viviani’s theorem is suitable to illustrate the derivation of a problem field, to build new con-

cepts, to generalize theorems and to investigate the converse problem too.  In our teaching 

material there are easier questions for investigation in classroom not only for the talented pu-

pils, and there are also harder problems aimed at advanced pupils. I intended to improve prob-

lem solving and problem posing abilities that are essential for teaching mathematics. It is 
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good to know about mathematical concepts, theorems and proofs, but it is even better to know 

where they came from and why they are studied. 

Which are the benefits of using historical problems? 

 We can show the continuity of mathematical concepts and processes over past centuries 

(Coxeter, 1967; Furinghetti, 2002; Gingyikin, 2003; Honsberger, 1973; Svetz, 2000). 

 We motivate learning process in the classroom, because our pupils deal with problems 

which were objects of investigation centuries ago. These problems allow the pupils to 

touch distant and recent past (András, 2010; Cofman, 1990, 1991, 1999, 2001, Kántor, 

1997; Kronfellner, 1998, 2007). 

 Pupils connect mathematics to various cultures and other intellectual developments in sci-

ence (Gingyikin, 2003; Lévárdi and Sain, 1982; Stewart, 2003). 

 We can often learn from the mathematical mistakes and the unsolved problems of the past 

(Barnett, 2000, Furinghetti and Radford, 2002). 

 We have sometimes to include biographies in mathematics classes. The life-stories of 

mathematicians often encourage talented pupils, and fill them with emotions. They think 

and believe that if they can solve problems posed by famous mathematicians in their youth 

- as Paul Erdős - later they may become such great mathematician as Paul Erdős was for 

example (Erdős, 1993, 1997; Furinghetti and Radford, 2002; Honsberger, 1996; Lévárdi 

and Sain, 1982). 

 Some mathematicians had an interesting life and it is good to know exciting things. It is a 

good motivation. Galileo Galilei (1564-1642), Vincenzo Viviani (1622-1703), Louis. J. 

Mordell (1888-1972), Paul Erdős (1913-1996) were such men. We may read passages from 

books about them, about the travelling ambassador of mathematics, in Hoffman’s book 

Man Who Loved Only Numbers about P. Erdős or we watch a DVD about the 100th anni-

versary of his birth. In connection with P. Erdős we can investigate other nice mathemati-

cal problems posed by him, or problems from the old series of the Hungarian High School 

Mathematics and Physics Journal (KöMaL) with the mathematically talented pupils (ad-

vanced level). (Babai, 1998; Bollobás 1997; Cofield, 2013; Furinghetti and Radford, 2002; 

Lévárdi and Sain, 1982). 

We followed three stages of problem solving: 

1. Encouraging independent investigation. 

2. Demonstrating approaches to problem solving. 

3. Discussing solutions of famous problems from the past centuries. 
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We formulated the posed problems as follows: “What happens if…?” “What is your conjec-

ture?” “How can you change the conditions or the way of the proof?”  So pupils can create 

their own mathematical ideas. 

The problem field of Viviani’s theorem 

Part I. We have chosen the topic of the problem field from the history of mathematics, from 

the geometry of triangles: Viviani’s theorem and its generalizations.  

Viviani’s theorem 

For any point P inside an equilateral triangle ABC the sum s of the length of the per-

pendiculars d1, d2, d3 from the point P to the sides is equal to the altitude h. 

We started with this well known property of the equilateral triangle (Problem 1) and discussed 

five ways for its proof. 

Part II. We changed the position of the point P, and we supposed that it lies on a vertex or on 

a side of the equilateral triangle ABC, or outside the triangle, or on the extension of a 

side. (Problem 2, Problem 3, Problem 4). 

Part III. We changed the perpendiculars to other segments (Problem 5, Problem 6 as a com-

plementary problem). 

Part IV. We changed the equilateral triangle to an isosceles triangle (Problem 7). 

Part V. We generalized the regular triangle to regular n-gon (Problem 8, advanced level). 

Part VI. We changed the dimension of the equilateral and scalene triangle. We left the plane 

and went over to space: regular tetrahedron (Problem 9) and its converse theorem. 

Part VII. Here we collected some theorems only for mathematically gifted students on high 

level: Generalized inequality of Erdős-Mordell (Problem 10), Barrow’s theorem 

(Problem 11), generalized Erdős-Mordell inequality for the tetrahedron (Problem 12) 

and K. Kazarinoff’s inequalities (Problem 13). 

Part VIII. Contest Problems or advanced level Problems (Contest Problems 1- 4). The 

range of the problems is very wide, from simple exercises (aged 13-14) through con-

test problems (aged 14-18) to scientific theorems; such as theorem of Erdős-Mordell, 

Barrow’s theorem, inequality of Kazaniroff (aged 16-19), or on university level 

Viviani’s four window problem, trisection of an angle by using an equilateral hyper-

bola, Viviani’s curve, tangent to a cyclois (aged 18-20). 
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Part I. 

Problem 1: Consider an equilateral triangle ABC and an arbitrary point P inside the triangle 

ABC. Let PD, PE, PF, be the segments from P perpendicular to the sides BC, AC, AB, respec-

tively. Consider the sum s = PD + PE + PF. What is your conjecture? 

Conjecture: The sum of PD + PE + PF is equal to the length of an altitude of the equilateral 

triangle. 

 

Discussion: First we allowed the pupils to draw, to measure, and to formulate their conjecture 

and then to prove it theoretically.  

We hoped that pupils would recognize that 

1. The sum of PD + PE + PF = s is equal to the length of the altitude of the equilateral 

triangle, i.e., s = h = 
2

3a
, where h denotes the length of the altitude of equilateral  

triangle ABC and a is the length of its side. 

2. The sum s is independent from the position of the interior point P. 

Our pupils found several ways for proving of the conjecture. 

Way 1  

 

The idea of the proof was that we can write the area of 

the equilateral triangle ABC as a sum of the areas of the 

triangle ABP, triangle ACP and triangle BCP because 

each of them has the same base length and the measure 

of area is additive.  

The proof shows that the sum s is independent of the 

position of the interior point P. 

Discussion: The pedagogical advantage of this method is the fact that the proof uses the con-

cept of area. We should use this proof if we want to enter into the topic of area or if we want 

to recall or reintroduce the area of an equilateral triangle. 
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Way 2  

 

We draw parallel lines to the sides AC, AB, CB through 

the point P.  

We get three parallelograms and three small triangles.  

We can give the altitude of the triangle ABC with the help 

of the altitudes of small triangles (PD + PF + PE = AS).  

 

Discussion: Our second way uses two main concepts, similar triangles and their properties, 

and the properties of parallelograms (LPK ∆ ≈ MNP ∆ ≈ PIJ ∆ ≈ ABC ∆). This might be a 

nice way to review or to remind our pupils of the concepts that they have previously studied. 

 

Way 3  

 

Discussion: The third way utilizes rotation and translation. We rotate segments PF and PE 

through 60
0
 about point P and then we translate the latter vertically by the length of segment 

PF. From this we obtained by aligning that PD + PF + PE = AS, which is equal to the length 

of the altitude of the equilateral triangle ABC.  

Way 4 

 

We consider a shifted copy A’B’C’ of triangle 

ABC, such that point P lies on B’A’. We 

construct PT such that PT is parallel to C’B’. Let 

Q be the foot of the perpendicular from A’ onto 

PT, and L be the foot of the perpendicular from P 

onto A’C’. Then AS = A’Q + PD = PL +PD = 

FL+ PF + PD = PE + PF + PD.  

(This can be done with GeoGebra too.) 
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Discussion: Way 3 and Way 4 use the concept of geometrical transformations. Pupils 

manipulated with the perpendicular segments, tried forming a straight line, by placing one 

next to, or on top of, each other, so that they can then be easily compared to the length of our 

altitude. We think Way 4 would be the first on we would show a class when discussing the 

problem, and then ask them to find other ways to prove the same thing. This proof belongs to 

the category PWW (Proofs Without Words) (Nelsen, Roger B. 1994). 

Way 5  

Way 5 uses the method of coordinate-geometry and the distance formula to show that the sum 

of the perpendiculars from P is equal to the length of altitude.  

Discussion: Way 5 is interesting for lower classes if we use dynamic geometry (GeoGebra). 

They got immediately the length of these line segments. For higher classes we use the method 

of coordinate-geometry. In this case the proof requires the knowledge of the distance formula. 

Part II. 

It is very useful if the secondary school pupils can pose new problems, if they ask new ques-

tions after looking over the solved problem (Cofman, 2000; Schupp, 2002). 

Viviani’s theorem can be generalized and modified in many directions. Our next questions for 

the discussion were: What happens if in the equilateral triangle ABC the point P is not located 

inside the triangle? 

From the pupils we got different options for locating the point P and formulated new prob-

lems. The simplest problems were special extreme cases of Problem 1. 

 Point P coincides with one of the vertices of the triangle ABC. 

 Point P is placed on one of the sides of the triangle ABC. 

 We formulated then following questions as open problems: 

Problem 2: What happens with the sum s of the distances if in the equilateral triangle ABC 

the point P coincides with one of the vertices or it   is on one of the sides of the triangle ABC? 

Discussion: It is obvious that in the first case s = h, and in the second case s  = d1 + d 2 = h. 

Both the first and second ways (Way 1, Way 2) are suitable in this case.  

The proofs are obvious from the figures (pupil’s work). (They used the notations x, y instead 

of d1,,d2.)  
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     C  

Problem 3: What happens if in the equilateral triangle ABC point P lies on the extension of a 

side of triangle ABC? 

Pupil’s work: (They used the notations x, y instead of d1,,d2.) 

 

Discussion: They found that s = d2 – d1 or s = d1 - d2. The result surprised them, because it 

depended on the position of the point P. 

We could unify the two values with the help of the absolute value s = h = |d1 – d2|. 

We summarized by h = k1d1 + k2d2 where k1 = 1 and k2 = – 1 or k1 = – 1 and k2 = 1. 

Problem 4: Consider an equilateral triangle ABC and a point P in the exterior of the triangle 

ABC. How can we express the length of the altitude h with the help of the distances from 

point P to the three side-lines?  

Discussion: Solving Problem 4 seemed to be a bit complicated. The point P can be placed 

outside of the triangle ABC. Pupils found different locations of the point P and got different 

results for the linear combinations of the distances. In this case the altitude can be computed 

by a combination of addition and subtraction of the three distances. Each line containing one 

of the three sides of the triangle defines two half-planes of the whole plane. One of these half-

planes Π contains the interior of the given triangle, the other one does not. There must be the 

sign plus before the front of the distance di if P belongs to Π, otherwise the sign must be mi-

nus. We presented the situations on the Figures. For each situation we can do the proof with 

the help of Way 1 with computing the areas of the proper triangles. 
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The pupils recognized that coefficients k1, k2, k3 are equal to 1, depending on the location of 

the point P, but at first they did not know which distances will be positive or negative. Their 

conjecture was that the decisive factor is whether the foot of the perpendicular intersects a 

side of the triangle or whether it intersects the extension of the side. But it was easy to show 

that this conjecture was not true (if the foot points E and D are outside the side CB,  and AB 

respectively, and the foot point F is inside the side AC, then dPF + dPE + dPD = h. 

By looking at the figures and rethinking the various cases they found that the sign of the dis-

tance in the linear combination depends on the relative position of the side to which its per-

pendicular is drawn and the vertex opposite that side (barycentre coordinates). 

Part III. 

If we follow the Way 2 in the proof of Viviani’s theorem we get other variations and new 

theorems. First we formulated a new open problem. 

Problem 5: Consider an equilateral triangle ABC and a point P inside of the triangle ABC. 

We draw parallels through the point P to the sides. These parallels cut out three segments 

from the triangle ABC. What can we say about the sum of these three segments? 

Conjecture: The sum of the three segments is constant, d1 + d2 + d3 = 2a (a is the length of 

the side of the equilateral triangle ABC.  

Pupil’s solution: (They used the notations x, y, z instead of d1, d2, d3). 
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The segments make an angle of 60
0
 to the corresponding side of the equilateral triangle. With 

variation of the angle we get Problem 6. This examination was homework for the talented pupils. 

Problem 6 (complementary problem): Let be given an equilateral triangle ABC and a point 

P inside of the triangle. We draw segments through the interior point P. These segments make 

the same angle α (0 < α < 90
0
) with the corresponding side of the triangle. What can we say 

about the sum s of these segments? Conjecture: s = const.  

Pupil’s work: 

 

Part IV. 

From this point on we made investigations in another direction. We generalised Problem 2. 

Problem 7: What can we say about the sum s if the point P is on the base of an isosceles tri-

angle?  

Conjecture: d1 + d2 = constant. 

Discussion: We can prove Problem 7 with the help of Way 1. The idea of the proof was that 

we can write the area of the isosceles triangle ABC as a sum of the areas of the triangle ABP 

and triangle ACP. 
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Pupil’s work: 

 

Now the question of the converse theorems arises. Which of the discussed problems have a 

true converse theorem? Can we invert Viviani’s theorem? We discussed these problems only 

with talented pupils of advanced level.  

Conjectures: Viviani’s theorem has a converse theorem and we can prove it in different ways.  

Part V. 

We continued our investigations in the direction of regular n-gons. 

Problem 8: Consider a regular n-gon (n > 3) and a point P inside of it. What can we say 

about the sum s of the distances from the point P to the sides of the regular n-gon?  

Conjecture: s = d1 + d2 + … + dn =   const. 

Pupil’s work: 

 

Discussion: The first step was to change the regular triangle to a square, to a regular 5-gon, 

regular 6-gon (etc.) at finally to a regular n-gon. For solving these problems we need the re-

sults of Problems 1-4. 

We asked the question of converse theorem, but it was easy to find a counter-example in the 

case of convex n-gons a counter-example: if we take a rectangle ABCD (AB = BC), we can 

immediately see that for an arbitrary interior point P of the rectangle ABCD the sum of the 

distances from the point P to the sides of the rectangle is constant and it is equal to the sum of 

the length of its two different sides.  

At normal high school level we can extend Viviani’s theorem to space and we can formulate a 

similar theorem for a regular tetrahedron.  
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Part VI. 

Problem 9: Consider a regular tetrahedron ABCD and a point P inside it.  Find the sum s of 

the distances from the point P to the four faces. Is the sum s = d1 + d2 + d3 + d4 constant and 

independent from the position of the interior point P? 

Discussion: Proof of Problem 9 is similar to the first proof of Problem 1 in the plane. We use 

the fact that the volume of the regular tetrahedron ABCD is equal to the sum of the volumes of 

the tetrahedra PABC, PABD, PACD, PCDB and the value s is constant and equal to the length 

of the tetrahedron’s  altitude (s  = h = 
3

2
a ). 

We formulated the converse theorem too. The pupils were convinced that it will be true.  

Their concept was false. The converse theorem of Problem 9 is not true.  

From the sum d1 + d2 + d3 + d4  = h = 
2A

V3
 follows only equality of the areas of triangles 

ABC, ABD, ACD and BCD, i.e. the tetrahedron ABCD is not  necessarily regular, only its fac-

es have equal areas (equipages tetrahedron).  

Part VII.  

The other parts of the problemfield of Viviani’s theorem are difficult; they are only for talent-

ed pupils. It is only at the advanced secondary school level or at university in courses of ele-

mentary mathematics that we can deal with the theorem of Erdős-Mordell, Barrow’s theorem 

for scalene triangle, with the generalization of Problem 9 to an outside point P, with the gen-

eralized inequality of Erdős-Mordell for a tetrahedron, Barrow’s theorem and Kazarinoff’s in-

equality for a tetrahedron. 

Problem 10 (inequality of Erdős–Mordell) (for talented pupils): If P is arbitrary point inside 

or on the boundary of a triangle ABC and if d1, d2, d3 are the distances from point P to the 

sides of the triangle then dPA + dPB + dPC   2 (d1 + d2 + d3), with equality if and only if trian-

gle ABC is equilateral and the point P is its circumcenter. 

Discussion: The first proof of Problem 10 was published in the Hungarian KöMal in1935 by 

Professor Mordell. A trigonometric solution by Mordell and Barrow appeared in the Ameri-

can Monthly in 1937. An elementary proof was published in 1956. In 1957 Kazarinoff pub-

lished an even more elementary proof, based on a theorem of Pappus of Alexandria’s Mathe-

matical Collection. It based upon the idea of reflection. We can find Bankhoff’s elementary 

proof in the American Monthly (1958, Vol. 65). Barrow proved a generalized form of the 
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Erdős-Mordell inequality, which follows from Barrow’s theorem as a special case. In 2007 

Claudi Alsina and Roger B. Nelsen gave a visual proof of it. They presented a visual proof of 

a lemma that reduced the proof to elementary algebra. In our mathematical camps the teachers 

often discuss the inequality of Erdős-Mordell. (Kubatov, 2012). 

Problem 11 (Barrow’s theorem) (for talented pupils): Let P be an arbitrary interior point of 

the triangle ABC. Prove that dPA + dPB + dPC   2(dPA’ + dPB’ + dPC’), where A’, B’, C’ are the 

intersection point of the bisectors of the angles BCP, CPA, ABC with the sides BC, CA, AB of 

the triangle ABC.  

Discussion: We find the proofs of these problems in several Hungarian mathematical books. 

The proofs require only elementary knowledge, but the methods are different (principle of re-

flection, use of congruence transformations, computation of areas, trigonometrical relations). 

The Erdős-Mordell inequality has a generalization for the tetrahedron. 

Problem 12 (D. K. Kazarinoff's inequality for tetrahedra only for talented pupils): Let P be an 

arbitrary interior point of the tetrahedron ABCD. Prove that  

dPA + dPB + dPC + dPD ≥ 2 2 (dPA’ + dPB’ + dPC’ + dPD’), 

where A’, B’, C’, D’ are the perpendicular projections of the point P to the planes BCD, CDA, 

DAB, ABC. 

Discussion: Problem 12 is a generalization of Problem 10. We found that the value of the co-

efficient in the plane was 2, so we expected that the value of the coefficient in the space will 

be 3. But it is not true. D. K. Kazarinoff constructed an orthogonal tetrahedron with the coef-

ficient 2 2 . 

Problem 13 (for talented pupils): The tetrahedron ABCD is equifaced and point P its interior 

point. Prove that  

dPA + dPB + dPC + dPD 3(d1 + d2 + d3 + d4) 

where di (i = 1, 2, 3, 4) are distances of P to the faces of the tetrahedron. In the case of equali-

ty the tetrahedron ABCD is regular and the point P is the centre of its circumscribed sphere. 

Part VIII. Contest Problems 

For talented pupils of different age we can find a lot of contest problems. Viviani’s theorem 

and its variants are popular at secondary school contests and in Geometrical Problem books. I 

collected some of them (aged 13-18). If we prepare our pupils for the contests or for the final 

examination on advanced level, we have to solve these problems with them. 
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Contest Problem 1 (aged 13) (Varga Tamás contest, 1994/95): The length of the sides of an 

equilateral triangle is 5. Let us draw parallel through the interior point P to the sides. For 

which point / points P will the sum of these parallel segments be maximal?  

Contest Problem 2 (aged 14) (Varga Tamás contest, 1997/98): Consider an equilateral trian-

gle and a point P inside of the triangle ABC. We denote the feet of perpendiculars from the 

point P to the sides AB, BC, CA by D, E, F. Prove that the value of the fraction 

PD PE PF

BC AC AB

 

 
 is independent of the position of the point P. 

Contest Problem 3 (aged 14) (Hungarian Geometrical Problem Book): Consider an equilat-

eral triangle and a point P inside of the triangle. The feet of the perpendiculars to the sides di-

vide each side into two segments. Prove that the sum of the non-joint 3 segments is independ-

ent of the location of the point P. 

Contest Problem 4 (aged 17-18) (final examination problem, 1993): The point P is an interi-

or point of a regular tetrahedron. From this point P we draw perpendiculars intersect the plane 

of the face-sides at the points X, Y, Z. Prove that the sum dPX + dPY + dPZ is independent of the 

location of the interior point.  

Summary  

We carried out experiments using history of mathematics in the classroom. We started with 

the historical Problem of Viviani, we dealt with an important property of the regular triangle 

and with variations of the conditions we solved a lot of problems, from the simple ones to the 

serious scientific problems. So our pupils have been all over the stages of the history of math-

ematics, from the ancient time to our age. 

We observed the same results which Furinghetti and Radford (2002), András (2010) and Law-

rence (2010) found. There is a parallel between history and pupils’ individual learning pro-

cess. The development of concepts and proofs followed the historical sequence. Their solu-

tions and mistakes were similar to the old ones. 

 For the average pupils we made mathematic classes more enjoyable by telling them the life-

stories of famous mathematicians (V. Viviani, P. Erdős, L. Mordell).  
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Abstract 

Mathematical activity like problem solving involves work with concepts. Refer-

ring to the work of Usiskin, understanding of a concept in mathematics has differ-

ent aspects. These aspects are skill-algorithm understanding, property-proof un-

derstanding, use-application understanding, representation-metaphor under-

standing and history-cultural understanding. 

The aim of this study is to investigate how these aspects appear in problems based 

on the concept area measurement, and to look for the reasons of unsuccessful 

problem solving connected to this topic. The research reports the typical solving 

strategies and thinking mistakes concerning 5 tasks developed for high school 

students of class 9. 

Key words: area measurement, concept formation, dimensions of understanding, problem 

solving strategy  

ZDM classification: D53, D73, G33  

 

Introduction 

The term mathematical understanding includes understanding both of concepts and of prob-

lems. 

Mathematics as an activity “consists of concepts and problems or questions: mathematicians 

employ and invent concepts to answer questions and problems; mathematicians pose ques-

tions and problems to delineate concepts.” (Usiskin, 2012) 

We investigate the interaction between concept-formation and problem-solving. Problem-

solving requires preliminary knowledge and understanding of concepts connected to the prob-

lem: „Do you understand all the words used in stating the problem?” (Polya, 1957) On the 

other hand the level of understanding of a concept is recognizable through solving problems 

connected to this concept. The analysis of the process of problem-solving contributes to the 

exploration of the concept deficiencies. 

The aim of this study is to answer the question how the different aspects of understanding the 

mailto:eszter.konya@science.unideb.hu
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same object namely the concept of area measurement appear in problems, and to look for the 

reason of unsuccessful problem solving connected to this topic. 

Theoretical background 

Skemp (1976) distinguish two meanings of the world “understanding”. The relational under-

standing means knowing what to do and why, and the instrumental understanding means 

knowing and using rules. Usiskin (2012) views this meanings as different aspects or dimen-

sion of understanding the same subject furthermore he speaks about more than two aspects. 

The dimensions of understanding according to Usiskin: 

1. Skill-algorithm dimension (instrumental or procedural understanding):  Knowing how to 

get an answer. Obtaining the correct answer in an efficient manner. 

2. Property-proof dimension: Knowing why your way of obtaining the answer worked. 

3. Use-application dimension (modeling): Knowing when to do something. 

4. Representation-metaphor dimension: Knowing represent the concept in some way (with 

concrete object, picture or metaphor) 

5. History-culture dimension (genetic approach, ethno mathematics): Knowing the history of 

the concept and its treatment in different cultures. 

„The dimensions of understanding are relatively independent in the sense that they can be, 

and are often, learned in isolation from each other, and no particular dimension need precede 

any of the others … .Ordering ideas or concepts in terms of difficulty is only appropriate if 

these items are in the same dimension.” (Usiskin, 2012) 

In my paper I apply Usiskin’s multidimensional view of understanding, because it helps to 

clarify the meaning of concepts and broadens options for developing these concepts. 

After studying his examples for clarification the meaning of these dimensions, I delineate the 

first four dimensions of understanding the concept of area measurement. 

1. Skill-algorithm understanding is choosing an appropriate algorithm to calculate the area 

depending on the plane figure and the given sizes. 

2. Property-proof understanding includes derivations of the basic formulas for the areas of 

triangles and other polygons, relations between area and perimeter of the same figure etc. 

3. Use-application understanding includes area measurement in everyday life, applications in 

complex problems etc. 

4. Representation-metaphor understanding includes area measurement with congruent tiles, 

cutting and rearranging polygons, area representation with an array of dots etc. 
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If we would like to know the level of learners understanding concerning to a concrete con-

cept, it is necessary to pose them problems connected to this concept. In many cases the sim-

ple routine tasks can’t highlight the gaps and misunderstandings well. So the process of prob-

lem solving serves for detection of typical mistakes of the concept-formation too. 

In his famous work How to solve it? Polya write down the main four steps of problem solv-

ing: understanding the problem; devising a plan; carrying out the plan; looking back. If some-

body want to devise a plan, it is necessary – after understanding the problem – to activate his 

or her preliminary knowledge. The main point of the plan is to find the connection between 

the problem and the appropriate elements of the preliminary knowledge. 

A well-stocked and well-organized store of knowledge is an important asset of the problem 

solver … . In any subject matter there are some key-facts which should be stored somehow in 

the forefront of your memory. When you are starting a problem, you should have some key 

facts around you close at hand, just as an expert workman lays out his most frequently used 

tools around him when he starts working.” (Polya, 1962) 

Making and carrying out a good plan also means to find the connections between the un-

known and the givens. Polya use a graphical representation to demonstrate these connections, 

where the unknown (what we are looking for); the data (what we have); the auxiliary un-

known (what we are looking for to solve an appropriate related problem) are symbolized as 

points, and the relations connecting the objects are indicated by lines (Figure 1).  

 

Figure 1 

If we can’t make direct relation between the unknown and data (we can’t solve the proposed 

problem), we introduce auxiliary unknowns and join these to the original one and so indicate 

the relation between the quantities. The aim is to establish direct or indirect connection be-

Unknown 

Auxilary 

unknown 

Data Data Data 

Auxilary 

unknown 

Auxilary 

unknown 
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tween the unknown and the data through some auxiliary unknowns. The graphical representa-

tion seems to be a suitable tool for investigating learners’ different solving strategies. 

There are many studies on solving problems with focus on area measurement. The researchers 

agree that measurement of area is more complex than measurement of length since length is 

directly measured by ruler while area is indirectly measured through the lengths appearing in 

the formula for calculating it (Zacharos 2006, Murphy 2009). According to Santi&Sbaragli 

(2007) the early use of formulas has been criticized on the grounds that it generates miscon-

ceptions about area measurement and it could bring children to confuse area and perimeter. 

Another possible cause of the conflict perimeter vs. area that the intuitive rule “more A, more 

B” (Stavy&Tirosh 1996) means in case of geometrical shapes that as the perimeter increases 

so the area increase. Kospentaris at al. (2011) investigates students’ strategies in area conser-

vation geometrical tasks and highlights the role of visual estimation. 

Research questions 

In this research I investigate the understanding of the concept of area measurement through 

the solution of five associated problems. 

1. Which dimensions of understanding the problems refer to? How perform students in class 

9 regarding to these dimensions? 

2. What kinds of methods use the students if they haven’t got the preliminary knowledge 

necessary to solve the problem? 

Methodology 

The 27 students participating in this study are 9
th

 graders in a Hungarian high school, in the 

same class. The class is a special „language-class”, they have mainly English lessons in the 

whole school year and only two mathematics lessons per week. The goal of this year is to pre-

serve their previous mathematical knowledge. The students involved in this study had varied 

backgrounds in mathematics. In the previous school year they learned in different upper second-

ary schools. Students don’t show up particular motivation, talent and interest in mathematics. 

A 45-minute written test was designed in a way that the 5 tasks are built on each other, be-

cause we wanted to help students to find a right idea for the solution. For example Task 1 can 

be understood as an auxiliary problem of Task 2. The solution of the Task 1 may become the 

part of the solution of the Task 2 and it may suggest the direction in which students should 

start working. It was considered to be also important to have a real-size picture to every task. 



99 

The test was written in March of 2013, earlier in the high school nothing has been taught from 

the topic of area measurement. 

Analysis of students answers 

In connection with the first research question I present and identify the area-tasks with dimen-

sions of understanding, then discuss on the students’ responses. 

 

Figure 2 

The dimensions of understanding: 

Task 1a requires only skill-algorithm understanding in a very simple way. 

Task 1b requires three dimensions: representation-metaphor understanding, since the area 

means covering with tiles; use-application understanding, namely using the formula for the 

area of the rectangle and skill-algorithm understanding that is breaking down the irregular 

polygon into pieces that are easier to manage, then add or subtract the areas of the pieces. 

Table 1a and Table 1b show the distributions of the answers of students: 

A = aa A = a
2
 A = ab A = 44 A = 4a A = ab2 T = 44a ---- 

8 7 5 3 1 1 1 1 

correct: 23 wrong: 4 

Table 1a 

Remark: 

26 students used some formula to calculate the area of the square, 23 of them were correct. 1 

student couldn’t answer. 

addition 

of areas 

of pieces 

subtraction 

of areas of 2 

squares 

A=12 A=ab2 A=ab 
multiplication of 

sides 
perimeter 

A=48 

or 

A=16 

---- 

9 5 1 1 1 1 1 2 6 

correct: 15 wrong: 12 

Table 1b 

Task 1 

Determine the area of the following plane figures! 

4 

4 

a) b) 
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Remarks: 

From the 15 correct answers 9 students added and 5 subtracted the areas of known pieces i.e. 

squares or rectangles and 1 student answered well without reasoning. Between the wrong cal-

culations appeared the multiplication or addition of all the sides (1-1 students). 

 

Figure 3 

Task 1b is an auxiliary problem of this task especially if somebody solves it applying subtraction. 

The dimensions of understanding: 

Representation-metaphor us.: the same as in Task 1b. 

Use-application us.: using the formula for the area of the square and the circle 

Skill-algorithm us.: the same as in Task 1b. 

The expected steps of solution: 1. calculation of the area of the square (AS); 2. calculation of 

the area of a quarter of a circle (AQC); 3. the area of the colored shape (A) is AS-AQC. 

Table 2 shows the number of students related to the steps of solution: 

subtraction 

A=AS-AQC 
AS=a

2
 AQC=AC/4 AC=a

2
 

AAS/4, AAS/3, 

AAS/2 
----- 

3 13 1 0 7 12 

Table 2 

 

Remarks: 

Nobody gave correct answer. 13 students determined 

the area of the square, but only 3 students indicated 

the subtraction of the areas. 1 student recognized that 

the colored shape is a quarter of a circle (Figure 4); 

however he didn’t remember the formula of the area 

of a circle (AC). There were 7 students who used vis-

ual estimation to determine the area A. 12 student 

didn’t deal with this task. Figure 4 

 

Task 2 

Determine the area of the colored shape, if the length of the square 

side is 6 cm! 
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Figure 5 

The dimensions of understanding: 

Skill-algorithm us.: calculating the area of an irregular polygon (cutting into triangles, calcu-

lating the areas, then adding them). 

Use-application us.: using the formula for the area of the triangle. 

Representation-metaphor us.: recognizing the necessary data (side and the corresponding 

height) to use the formula. 

Table 3 shows the performance of the students. 

correct answer 
see 3 triangles 

on the picture 

determine sides 

of pentagon 
add all the data ----- 

5 students 3 students 3 students 1 student 15 

Table 3 

Remarks: 

15 students (more then the half of them) couldn’t work on this task. There were only 5 correct 

answer, and further 3 students saw the 3 triangles as useful parts of the irregular pentagon. 3 

students determined or tryed to determine the sides of the pentagon, for example Levente, who 

calculated the lenghts of the missing sides with a „formula” ac=b
2
 (Figure 6). 

 

Figure 6 

Task 3 

Calculate the area of the attached polygon! (Numbers are in cm.) 



102 

 

 

Figure 7 

The dimensions of understanding: 

Property-proof us.: What is the formula for triangles and why? What are the conditions of ar-

ea conservation? 

Representation-metaphor us.: pictorial understanding of the concepts of area, recognizing 

base and corresponding height in the picture. In this case cutting and rearranging one triangle 

into other is not easy. 

The skill-algorithm understanding doesn’t work, because we know one side exactly, but the 

height not. 

Table 4 shows the performance of our students. 

AABC=ADEF 

(without reasoning) 

AABC<ADEF 

(without reasoning) 

determined the 

length of sides 

compared 

triangles to 

parallelograms 

--- 

4 students 8 students 10 students 1 student 13 

Table 4 

Remarks 

4 students answered that the areas are equal (AABC=ADEF) but nobody gave correct reason-

ing. Only one solution (Figure 8) indicated the property-proof understanding: Evelin complet-

ed triangles into parallelograms however the statement that the areas are equal was missing. 

 

Figure 8 

8 students noticed that the area of the triangle DEF is larger than the area of the triangle ABC 

(AABC<ADEF). 10 students tried to calculate the length of the 3 sides to determine the areas of 

triangles. 

Task 4 

Determine the relation between the areas of triangles ABC and DEF if AB=DE=4 cm! 

 A 

E 
 A 

D B 

A 

 A 

A 

 A 

C 
 A 

F 
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This task is a typical area invariance problem concerning triangles with the same base and 

equal heights between parallel lines (Kospentaris at all 2011). Kospentaris, Spyrou and 

Lappas investigated the solutions of 12
th

 graders. 47.3% of the student gave correct answer, 

but only 8% of them wrote a correct argument. Among the wrong answers 77% noticed that 

triangle with obtuse vertex has larger area. The explanations, if there were any, corresponded 

to visual estimations or false reasoning, like “smaller sides, smaller area”. 

 

Figure 9 

The dimensions of understanding: 

Skill-algorithm us.: calculating area with the help of grid; completing the polygon into rectan-

gle then subtracting the calculated area of the right triangles and square. 

Representation-metaphor us: the area means covering tiles (squares). 

Use-application us.: Using the formula of the area of right triangle and rectangle. 

Table 5 shows the performance of the students. 

Table 5 

Remarks: 

Task 1b and 2 are related to this task, but here the additional rectangles aren’t drawn, only the 

grid. 

Nobody solved the task correctly. 4 students counted the number of units approximately, so 

they gave a quite good estimation for the area of the polygons. 5 students drawn the smallest 

rectangle which enclosed the triangle or quadrilateral, but they didn’t continue the work, and 

didn’t determine the area of the complemented triangles. 12 students tried to determine the 

lengthy of sides again, and gave “formula” to calculate the area from the sides. For example 

Anna thought that the area of every polygon is calculated by multiplication of its sides  

(Figure 10). 

completed into 

rectangle 

determined the number of 

units (squares) 

determined the length of 

sides 
---- 

5 students 4 students 12 students 8 students 

Task 5 

Determine the area of the triangle and quadri-

lateral, if the distance of two adjacent grid-

points is 1 unit! 

Determine the relation between the areas of 

triangles ABC and DEF if AB=DE=4 cm! 
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Figure 10 

Solving strategies if the preliminary knowledge is missing 

“If you are familiar with the domain to which your problem belongs, you know its “key 

facts”, the facts you had most opportunity to use.” (Polya, 1962) However the appropriate el-

ements of our formerly acquired knowledge are missing, we have to use alternative solving 

methods. I adopt Polya’s diagram, a graphical tool to describe students solving strategies. 

I give two examples to present two different solving strategies in both cases. 

 

Figure 11 

In Task 2 we have the problem to find the area of the colored figure. The area of an irregular 

shape can be computed as the difference of areas of shapes we are more familiar with. In this 

A 

AS AQC 

a 
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task we have to subtract the area of a quarter of a circle (AQC) from the area of the square (AS) 

if the side of the square (a) is given. We can see in Dominika’s solution, that the relation be-

tween a and AQC is missing, so at first she gave up the work (Figure 11). 

Dominika tried to solve the problem once again: Instead of the missing connection between a 

and AQC she used visual estimation (Figure 12). She recognized that the area of the triangle 

DBC is the quarter of the area of the square (ADBC=9 cm
2
). She assumed that the unknown ar-

ea is the double of the half of this area, so A=9 cm
2
. It’s an acceptable approximation for A. 

Figure 12 

In Task 4 we have to recognize the equality of the areas of the two triangles. The “key facts” 

of the solution is to realize that the parallel lines make sure the equality of the heights: 

d=h1=h2. Dominika couldn’t use this visual data, so there are missing lines on the diagram 

describing her solving strategy. (Figure 14) 

She tried to overlap the triangles and assumed special properties incorrectly instead: ABC is 

equilateral triangle (1); DEF is isosceles triangle (2). She interpreted the concept of „base and 

height” not a flexible way, because she wanted to calculate the height starting from the ob-

tuse-vertex (Figure 13).  

 

Figure 13 

A 

ADC

B 

AS 

a 
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Following Dominika’s solution we can see that the diagram is much more complicated, be-

cause three new points (1, 2, DF) and seven new lines appear (Figure 15). 

  

 Figure 14 Figure 15 

Conclusion 

We can examine all the 4 dimensions of the understanding of the concept of area measure-

ment in simple and in complex problems too. We find the representation-metaphor under-

standing in many problems, which is related to the correct concept image of the area. Howev-

er the property-proof understanding appears only in a few cases. 

Problem-solving is useful to examine the level of the concept formation especially in the cas-

es where the necessary preliminary knowledge is in the long term memory. There are missing 

preliminary knowledge by most students. They often replace these concepts with false analo-

gy, false assumptions or visual estimation as one can see well from the diagrams based on 

their solving strategies. 

Studied the problem solving process of students we detected some frequent mistakes accord-

ing to the concept of area: 

1) The area of a triangle is connected to the length of sides. 

2) Triangles with larger perimeter have larger area. 

3) The formula for the area and perimeter of a rectangle is well-known, however the students 

expend it in an inadequate way, for example multiply all the sides of a polygon to deter-

mine its area. 

4) In obtuse angled triangle the „base” has to be the side opposite to the vertex of obtuse an-

gle. 

A1 A2 

AB 

DF 

d (1) (2) 

h1 h2 

DE 

<? >? =? 

AB d DE 

h1 h2 

A1 A2 

<? >? =? 
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The detected mistakes in points 1) and 2) are in keeping with findings of researchers men-

tioned in the theoretical background section, however they in points 3) and 4) are not. I’m 

convinced that the analysis of further problems posing for students makes the process of con-

cept formation more clearly. 
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Abstract 

Problems have an individual component allowing learning opportunities for both 

low- and high-achieving students. Developing problem solving abilities for all 

students has become a goal of various professional organizations and reformed 

curricula (Connected Mathematics Project, Core-Plus Mathematics Project, 

NCTM, etc.). According to these documents, problem solving encompasses work-

ing on given problems individually, posing new problems and solving them using 

different heuristic strategies, principles and tools, reflecting on the outcome as 

means of building new mathematical knowledge, and developing reasoning flexi-

bility. However, what abilities one draws on when problem solving? Pólya, 

though he had reflected throughout his long life on the question of how he and 

others do mathematics, in his interview with Kilpatrick in 1978 showed, that he 

had not given much thought as to what abilities are needed. This question was 

given to a group of preservice teachers who were enrolled in a problem solving 

content seminar. In this paper, I report on preservice teachers’ views on (problem 

solving) abilities of a mathematically competent person. The data also revealed 

that held views on problem solving abilities may influence if and how they im-

plement problem solving in their future classroom as well as what type of prob-

lems they will use to reach students of different mathematical aptitude.  

As a result of research reported here, a concept for a professional development for 

teachers in problem solving developed within the German Center for Mathematics 

Teacher Education (DZLM, www.dzlm.de) is presented. Specifically, design of a 

wide range of learning activities for mathematics teachers is considered in order to 

achieve the vision of problem solving as culture and standard of mathematics 

classroom for all. 

Key words: problem solving ability, professional development, teacher education, beliefs 

ZDM classification: C30, D50  

Introduction 

Mathematical problems have been central in the mathematics school curriculum since antiqui-

ty, but since the 1980s, mathematics educators have agreed upon the idea of developing prob-

lem-solving ability, and problem solving has become a focus of mathematics education as a 

means of teaching curricular material and seeking the goals of education (Stanic & Kilpatrick, 

1989). Following Pólya (1945/1973), for whom problem solving was a major theme of doing 

mailto:akuzle@math.upb.de
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mathematics in his book, How to Solve It, the National Council of Teachers of Mathematics 

(NCTM, 1989, 2000) has strongly endorsed the inclusion of problem solving in school math-

ematics for several reasons: (1) to build new mathematical knowledge, (2) to solve problems 

that arise in mathematics and in other contexts, (3) to apply and adapt a variety of problem-

solving strategies, and (4) to monitor and reflect on the mathematical problem-solving pro-

cesses. Problem solving is considered to be one of the most important aspects of today’s 

mathematics curriculum, which is reflected by new curricula, books (e.g., Fey, Hollenbeck, & 

Wray, 2010), professional organizations, etc. (NCTM, 1989, 2000). This is quite similar to the 

objectives stated by the German Kulturministerkonferenz ([KMK], 2003, 2012), which repre-

sent all government departments of education. Nowadays, topics taught in mathematical clas-

ses require more than mere arithmetic or calculation skills, but rather extension and adaptabil-

ity of previous knowledge, and flexibility in thinking. Problem solving offers students oppor-

tunities to learn and do mathematics by the means of posing and solving problems. 

Problem solving is an extremely complex human endeavor and for many students is not an 

easy task. Based on the analysis of both North Rhine-Westphalia curriculum and German 

standards (KMK, 2003, 2012; NRW, 2004, 2007, 2011), problem solving encompasses work-

ing on given and newly posed problems by using heuristics and tools, evaluating the reasona-

bility of the results and negating ideas for problem solving. Thus, it requires numerous cogni-

tive activities and many types of knowledge. However, the abilities one draws on when prob-

lem solving is not discussed. Pólya, though he had reflected throughout his long life on the 

question of how he and others do mathematics, in his interview with Kilpatrick in 1978 

showed, that he had not given much thought as to what abilities are needed. Through the con-

versation with Kilpatrick and his prompts, Pólya outlined and described the different dimen-

sions of ability of someone that is capable in mathematics: good spatial ability, good and or-

ganized memory, ask good questions, draw figures, etc. Moreover, both agreed that to some 

extent mathematicians do not have certain special kinds of abilities, but have ordinary abilities 

that they then apply to mathematics. With respect to problem solving ability he said, “I think 

it is not so much ‘develop’ as it is ‘awaken’” (Kilpatrick, 2011, p. 5), but added that some 

kind of “probability” has to exist. That is, you have to have a genetic predisposition, which 

then through good teachers can be awakened.  

On the other hand, teachers’ personal beliefs and theories about mathematics, learners and 

learning, teaching, subjects or curriculum, learning to teach, and about the self are widely 

considered to play a significant role in teaching practices (Pajares, 1992; Wilson & Cooney, 

2002), task definition and selection (Schoenfeld, 1988), interpretation of content, and com-
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prehension monitoring (Thompson, 1992), and implementation of curriculum reform 

(Howson, Keitel, & Kilpatrick, 1981). In the rest of the paper a term “view” will be used ra-

ther than “beliefs” to allow reporting on non-cognitive dimensions which is then more holistic 

(Rösken, Hannula, & Pehkonen, 2011).  

Taken the above listed considerations in mind, I sought to study prospective teachers’ views 

on (problem solving) abilities of a mathematically competent person and its change as they 

progresses through a 15-week seminar on problem solving as well as how these held beliefs 

might influence their teaching practices with respect to problem solving. The following ques-

tions were of interest: 

 What are prospective teachers’ views on the mathematical problem solving abilities? 

 How do their views about the mathematical problem solving abilities change at the 

end of the semester? 

 Which elements of their views towards the mathematical problem solving abilities can 

be identified as relevant factors influencing their future teaching practices?   

In addition, based on the results of the study I will present a concept for professional devel-

opment that would allow the vision of problem solving for all as advocated by new curricula. 

Theoretical background  

“The preeminence of increased problem-solving ability as a goal of mathematics instruction 

has long been admitted“ (Kilpatrick, 1969, p. 523), whereas this ability is characterized both 

in terms of content (what mathematics students know) and process (how students go about do-

ing and understanding mathematics). Werdelin (1958) gave a definition for the term: 

The mathematical ability is the ability to understand the nature of mathematical (or simi-

lar) problems, symbols, methods and proofs; to learn them, to retain them in memory, 

and to reproduce them; to combine them with other problems, symbols, methods, and 

proofs; and to use them when solving mathematical (and similar) tasks. (p. 13) 

The notion of mathematical types or disposition has been a topic of interest by both research-

ers and laymen. It is not rare to hear a student say that his poor mathematical performance is 

due to the lack of a “mathematical gene”. Some researchers, such as a Russian researcher 

Krutetskii (1969), contended that a mathematical frame of mind distinguishes mathematically 

competent individuals from mathematically not so competent ones.  

By examining the relationship between the individual’s success in problem solving and his or 

her cognitive and non-cognitive processes, research studies sought to explain the phenomenon 

“ability to solve mathematical problems”. Studies of mathematical abilities of school and 



111 

university students revealed factors of mathematical ability: 

 Deductive reasoning (Blackwell, 1940; Kline, 1960; Werdelin, 1966) 

 Inductive reasoning (Werdelin, 1958) 

 Numerical ability (Kline, 1960; Martin, 1963; Werdelin, 1958, 1966) 

 Spatial-perceptual ability (Blackwelll, 1940; Werdelin, 1966) 

 Verbal comprehension (Blackwell, 1940; Kline, 1960; Martin, 1963; Werdelin, 1968, 

1966) (as cited in Aiken, 1973, p. 407). 

On the other hand, Krutetskii’s (1966, 1969) research focused on the components of mathe-

matical ability, that he had isolated from his observations of Russian school children when 

solving problems. Based on the logical analysis, he identified the following structure of math-

ematical ability: 

1. Obtaining mathematical information 

 the ability for formalized perception of mathematical material and for grasping the 

formal structures of a given problem. 

2. Processing mathematical information 

 the ability for logical thought structure of mathematics (mathematical symbols) 

 the ability for generalization of mathematical material (objects, relations, opera-

tions) = generalization 

 the ability for curtailment of thought = condensation 

 the ability to think flexibly during a mathematical activity = flexibility 

 striving for economy of mental forces = being economical 

 the ability for rapid reconstruction of mental processes in mathematical reasoning 

= reversibility  

 an ability to visualize abstract mathematical relationship and dependencies = visu-

alization 

 an ability for spatial concepts and spatial imagination = spatial reasoning 

3. Retaining mathematical information 

 mathematical memory for symbols, numbers and formulas, mathematical relation-

ships, schemes of arguments and proofs, methods of problem solving and princi-

ples of approach = structural memory 

4. General synthetic component 

 the ability to find mathematical meaning in many aspects of realty that on surface 

might not seem mathematical with a tendency to categorize the world in terms of 
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mathematics and logic = mathematical frame of mind 

Krutetskii (1976) contended that these components are interrelated and influence one another 

forming a single integral system of individual’s mathematical ability. Hence, mathematical 

talent is multidimensional and unique; for some it is analytical using verbal-logical reasoning 

(abstract cast of mind), for some geometrical using visual and spatial reasoning (mathemati-

cally pictorial cast of mind), and for some it is harmonic which is a combination of the former 

too (abstract and image-bearing cast of mind). He said that the harmonic thinker is ingenious 

in solving various mathematical problems, whereas the two other types are limited to certain 

mathematical areas. Krutetskii’s (1966, 1969) structure of mathematical ability served as a 

theoretical framework for this study and taxonomy for the measurement instrument to analyze 

prospective teachers’ views about mathematical and problem solving abilities. 

Methodology 

Settings and Participants 

The research was conducted within a problem solving seminar “Problem solving in mathe-

matics” at a large state university in Germany, that was offered both to elementary (grades 1-

4) and lower secondary preservice teachers (grades 5-10). The seminar took place once per 

week for 90 minutes and was organized by both the author of this paper and the students. On 

the one hand, the course concentrated on learning about problem solving (e.g., problem solv-

ing models, heuristics, self-regulated problem solving) done through student presentations, 

whilst at the same time focusing on solving mathematics problems and how problem solving 

activities can be implemented in mathematics instruction led mainly by the instructor. The 

problems came from many sources and contexts in which mathematical ideas were examined 

with the use of different resources, such as technology, references or colleagues, to engage in 

genuine mathematics problem solving. The aim of the seminar was to provide the participants 

a deeper understanding of the problem solving through self-study, inquiry, investigation and 

exploration.  

In total 21 students in their 3
rd

 till 6
th

 semester participated in the study. The cohort included 

14 elementary and 7 lower secondary students. The participants had limited, if any, experi-

ence in problem solving and knowledge about it. Their school memories of mathematics 

classroom portrayed a traditional classroom, where the teacher presented learning materials 

and algorithms. This was then followed by practicing the algorithms on textbook tasks. Nei-

ther open-ended problems nor interdisciplinary problems were a part of the instruction. Very 

few had experienced problem solving – those who did associated problem solving with solv-
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ing puzzle, modeling and word problems. With respect to their later university experience, 

some reported being introduced to the topic and engaged in problem solving. Hence, the par-

ticipants had limited practical experience with problem solving, whereas some got the theoret-

ical experience within methods courses.  

Data Collection 

Data collection methods included several different written materials: paper on problem solv-

ing abilities and its revision at the end of the semester, problem solving homework and reflec-

tion on the problem solving process, and final reflection paper. A large amount of data was 

collected to allow confirming and disconfirming data and to refine the characterization of par-

ticipants’ views as suggested by Philipp (2007). At the beginning of the semester the partici-

pants had to write a 2-pages long paper on the problem solving abilities, where the two fol-

lowing aspects were described: (1) what abilities distinguish a mathematical competent per-

son from a less competent one and (2) what competencies are important for mathematical 

problem solving. At the end of the semester, each participant had to read its paper and revise 

it. In the paper revision they had to elaborate if and how their views about the listed mathe-

matical problem solving abilities changed. As noted above, the participants during the semes-

ter wrote several reflection papers and solved homework with different mathematical prob-

lems. These instruments were designed to elicit how their held views affect their future teach-

ing decisions with respect to implementing problem solving. The study design and data re-

sources are summarized in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Overview of the study design. 
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After data collection was completed, data analysis started including several phases through 

the data sources (see Figure 1) as suggested by Patton (2002) and Merriam (1998). For each 

participant, certain survey items relevant to the research questions, reflection papers and paper 

on problem solving competencies were examined to ascertain initial and ending views about 

problem solving abilities and their influence on their future professional activities. I conduct-

ed a content analysis to determine commonalities and trends in light of the framework intro-

duces earlier in the paper. Nevertheless, in addition I used inductive analytical method (Pat-

ton, 2002) to note additional categories not given a priori. Here identification of pertinent pas-

sages from the data sources (paper on problem solving competencies, final reflection paper, 

reflection papers on the problem solving process) for establishing and confirming evidence 

took place in order to characterize each participant’s views. To detect shifts in participant’s 

views similar process was undertaken on reflection papers. This allowed also confirming or 

disconfirming previously established views. To answer the third question, I examined the fi-

nal paper to derive factors that may be influential for their future teaching practices. From 

there, I was able to draw conclusions that are presented in the next section.  

Results 

In this section, I present participants’ responses with respect to the research questions. I first 

present the initial data on prospective teachers’ on mathematical problem abilities, followed 

by reporting shifts in their views. In the end, I focus on reporting the data relevant for their fu-

ture teaching practices.  

Prospective teachers’ views on the mathematical problem solving abilities  

The findings from the paper on problem solving abilities were tabulated and compared. The 

participants (74%) found it difficult to tackle the question of mathematical abilities. Almost 

all participants (82%) shared the view that a set of particular abilities that differ a more math-

ematical capable from a less mathematical capable person does not exist. For instance, one 

student said “People have different strengths and weaknesses in general und hence also in the 

area of mathematics. Each possesses a diversity of abilities.” On the other hand, the rest 

(18%) contended that such a set of abilities exists including: high IQ, mathematical 

knowledge and relationships taught in school mathematics classes, and the ability for logical 

and abstract thought. In Table 1 frequency of participants’ views on mathematical problem 

solving abilities is outlined. The abilities belonging to processing information were highly 

coded (47 times), followed by retaining information (23 times), obtaining information (3 
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times) and general component (1 time). All participants listed at least one subcategory of pro-

cessing mathematical information, whereas others (83%) listed one of the retaining mathemat-

ical information subcategories. Very few of them (13%) listed abilities to obtain mathematical 

information. Only one participant indicated general component as a factor.   

 

Table 1 

Frequency of Participants’ View on (Mathematical) Problem Solving Abilities 

Problem solving abilities Code frequency Participants (n=23) % 

Obtaining mathematical information 3 3 13 

Processing mathematical information 47 23 100 

Retaining mathematical information 23 19 83 

General component 1 1 4 

 

The abilities for processing mathematical information were with the highest frequency coded 

(Table 2). Here not all of the categories, as proposed by Krutetskii (1976), were identified, 

namely, being economical. Very few participants (4%) listed reversibility, reflection and be-

ing able to quickly think as a factor, whereas some listed generalization (9%), and condensa-

tion and creativity (13%) as a factor. For the rest relevant factors were ability for logical 

thought (30%), ability to visualize mathematical structures and dependencies and spatial rea-

soning (39%), and the ability to think flexibly when solving a mathematical problem (48%). 

 

Table 2 

Participants’ Views on (Mathematical) Problem Solving Abilities with Respect to Processing 

Mathematical Information 

Processing information Participants (n=23) % 

Flexibility 11 48 

Visualization 9 39 

Spatial reasoning 9 39 

Logical thinking 7 30 

Condensation 3 13 

Creativity 3 13 

Generalization 2 9 

Reflection 1 4 

Reversibility 1 4 

Being economical 0 0 
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Presented in Table 3 are participants’ views on (mathematical) problem solving abilities with 

respect to retaining information. With respect to retaining information, 19 participants of par-

ticipants (83%) mentioned it as a factor, whereas 6 participants held memory for mathematics 

relationships (26%), 5 participants methods of problem solving (22%), and 2 participants 

principles of approach for important ones (9%). None explicitly mentioned schemes of argu-

ments and proofs.  

 

Table 3 

Participants’ Views on (Mathematical) Problem Solving Abilities with Respect to Retaining 

Mathematical Information 

Retaining information Participants (n=23) % 

Mathematical knowledge 6 26 

Problem solving methods 5 22 

Mathematical approaches 2 9 

Proofs 0 0 

 

Given that the inductive methods took place, additional categories were elicited, that were not 

outlined in the framework from Krutetskii (1966, 1967): ability to convey mathematics to 

others, IQ and the ability to regulate non-cognitive factors (motivation, enthusiasm, persever-

ance, volition) as outlined in Table 4.  

 

Table 4 

Additional View on (Mathematical) Problem Solving Abilities 

Problem solving abilities Code frequency Participants (n=23) % 

Nature of phenomenon 17 17 74 

Obtaining ability 15 15 65 

Affect 22 10 43 

IQ 2 2 9 

Conveying mathematics 4 3 17 

 

Interestingly, some participants (17%) approached the problem also from a practitioners’ per-

spective. The three participants added that the ability to convey mathematical knowledge, ide-

as, and thinking on others is a factor that distinguishes a competent person from a less compe-

tent one. Two participants (9%) on the other hand held the view that IQ is an important factor. 

Interestingly, 9 participants (39%) reported the ability to regulate affective domain as an im-

portant ability. In addition, 17 participants (74%) argued as to how “mathematical ability” is 
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obtained. The majority (87%) held the view that mathematical ability is genetically predis-

posed, but that it can be awakened. That is, each child has a good opportunity for it can be 

awakened through a good teacher. Only two participants also contended that mathematical 

ability is genetically predisposed, but were not so optimistic as the majority. One participant 

wrote, “What is there, can be trained, but what is not there, cannot be developed.” 

Shift in prospective teachers’ views on the mathematical problem solving abilities  

Although the participants entered the seminar with held views on problem solving abilities, 

the majority by the end of the seminar recognized and came to value different set of mathe-

matical abilities and the need to awaken and support them in their students. Two participants 

did not submit the assignment, whereas nine participants (39%) reported not having changed 

their views, but again repeated what they wrote at the beginning of the semester (see Figure 

2). These included: visualization, spatial reasoning, organized memory, flexibility, IQ and 

logical thinking. From the participants (n=2) who changed (4%) or refined (n=10) their views 

(48%) the following categories were identified: logical thinking, flexibility, reversibility, 

creativity, reflection, speed, memory of mathematical relationships and problem solving 

methods and approaches, general component and conveying mathematical knowledge and 

abilities. The rest explicated in detail how their views either changed or were modified. Only 

one participant reported having changed his views. Many of them said that participation in the 

seminar allowed them to think about the topic of problem solving abilities from a different 

perspective; not only as a learner but also as a future practitioner. Such shift allowed them to 

broaden their spectrum. The participants mostly commented on the two abilities: the ability to 

process the information and the ability to retain the information. With respect to the ability to 

process mathematical information three subcategories were emphasized: flexibility, reversibil-

ity and reflection. Having solved many problems within the seminar, they emphasized that it 

is important to “to be able to shift thinking, change the approach, consider another idea” and 

“look at the problems from different perspectives”. In addition, being able to rapidly recon-

struct the direction of mental processes alternating from a direct to a reverse train of thought 

was recognized as an important ability.  
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Figure 2: Overview of preservice teachers’ shifts in views on the mathematical abilities. 

 

During the seminar the participants had to write a protocol of their problem solving process. 

The data shed the light on how this activity was an eye-opener. All of the participants noted 

that “structured observation of one’s own actions” was an important ability for processing 

mathematical information. By looking back at the solution, students were able to consolidate 

their knowledge and develop their ability to solve problems. With respect to the ability to re-

tain mathematical information, the participants emphasized the importance of mathematical 

memory being organized. Hence, they articulated that the information (mathematical 

knowledge, relationships between mathematical knowledge, heuristics) has to be “well-

structured”, so that the problem solver can productively use it. Moreover, the participants ex-

plicitly listed factors needed for productive problem solving: “substantial mathematical 

knowledge”, “understand mathematical relationships”, “consciously use heuristic methods” 

and “orchestrate the mathematical tools”. One participant summarized his view nicely, 

However, it become clear to me that mere knowledge is not enough. The ele-

mentary aspects, such as, structure, organization, individuality, organized 

memory, conscious use of heuristics, but also the productivity and creativity, in 

retrospect through the entire semester have shown to be of importance.  

At the beginning of the semester the theme of obtaining mathematical abilities was self-

initiated by the participants. With the end of the semester they broached this issue once again. 

While at the beginning of the semester the participants focused on how problem solving abili-

ties are obtained from a learner’s perspective, at the end of the semester a shift was noticed. 

They reported that students can learn different heuristics as well as when and how to apply 

them, use different mathematical models and procedures when required by the situation and 

develop reflective activity and willingness to work hard. For instance, one participant said, 

… students can be ‘brought up’ into a mathematically competent person. In the 

seminar I learned that plethora of mathematical abilities can be developed with 
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a continuous repetition and training, continuous engagement with mathematics. 

Each kid possesses some potential, which in a right manner must be awakened. 

Relevant factors influencing future teaching practices  

Through self-engagement in problem solving the participants realized their capacity as practi-

tioners to foster and enhance different mathematical abilities in their students. In order words, 

shifts in their views about what it means to be a mathematically competent problem solver 

was a newly found awareness of the complexity of teaching mathematics and problem solving 

so that their students would develop different problem solving competencies. One participant 

said, “I need to activate previous knowledge, create new knowledge through mathematical 

problems and foster it.” Hence, the view was held that mathematical abilities could be awak-

ened, broadened and fostered. This can be achieved through learning how to problem-solve, 

using good tasks and implementing phases of practice followed by reflection. 

The type of problems they would use was highly coded. The participants talked about routine, 

open, middle-open, open-ended, puzzles, and Fermi problems, whereas types of problems 

were tools with which certain goals can be achieved. Fermi problems were seen as good prob-

lems as they “require search for information”, “support child’s creativity”, “allow each 

child to participate in problem solving”, “interdisciplinary”, “cognitive potential”, “use of 

different strategies”,  “motivate kids to do mathematics”, etc. Similarly, puzzle tasks were 

favored for logico-mathematical support, and open-ended problems as allowing different 

problem solving pathways. On the other hand, proofs and “hard problems” would not be 

used, because they could be demotivating. Moreover, geometry tasks were excluded as well 

because “geometry is hard” and “they can be depressing and lead to frustration”. Moreover, 

the participants emphasized the role of reflective activity as a way to “to improve any solution 

or the understanding of the solution.” Thus, reflection practices would be fostered so that stu-

dents can consolidate their knowledge, and develop their ability to solve problems. These few 

thoughts show that the participants began to see value in teaching differently, than experi-

enced  thus far, to meet the needs of their students.  

Conclusions and implications for practice 

Teacher beliefs and practices are known to be extremely resistant to change. Explicitly mak-

ing prospective mathematics teachers aware of their views, challenging them and fostering re-

flection seems to impact their views about teaching and teaching practices.  Through reflec-

tion one starts to see differently things and hence, challenge their existing beliefs leading to 
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their change (Philipp, 2007). In the present study, this was accomplished through a modest 

program that relied upon carefully designed sequence of topics, tasks, reflective discussions, 

and protocols. Moreover, giving prospective teachers time to reflect upon their views and ex-

periences, allowed them to integrated new ideas and thoughts which allowed them to integrate 

refined or new ideas into existing beliefs structure concerning problem solving abilities and 

teaching problem solving. However, the question remains how sustainable are these views, 

taken that other university courses do not follow the same philosophies. In addition, taken that 

the participants reported not using geometry problems and proofs, future research needs to 

examine if belief structures are domain-specific and to which extent are they hold.  

Implications for professional development 

Implementation of problem solving in German mathematics classrooms is now more promi-

nent than ever. Many professional developments are offered with a focus on problem solving 

and the teaching of it as an attempt to accelerate changes in instructional practices. However, 

schools fast abandon the newly learned ideas under the pressure to demonstrate quick im-

provements in student performance, personal views that this will not work in their classroom 

and school, worries that students would become even more demotivated and disinterested in 

learning mathematics, etc. Perhaps the abandonment of the new practices is caused by lack of 

attention in the teacher professional development towards the wide range of instructional 

practices and beliefs that teachers bring with them into the learning environments. As a result 

of research reported here a concept for a professional development for teachers in problem 

solving developed within the German Center for Mathematics Teacher Education (DZLM) is 

presented.  

Taken that problem solving is a relatively a new standard and teachers themselves had few, if 

any, opportunities to engage in problem solving, the professional development has to address 

both developing knowledge about problem solving, knowledge for teaching problem solving, 

and strengthening their existing mathematical content and pedagogical knowledge. Naturally, 

the goal is that through problem solving students recognize mathematical problems in every 

day life, learn different heuristics and willingness to work hard, and develop reflective activi-

ty for their own actions. To achieve this, an already proven teaching concept from (Bruder, 

2003) will be used that is based on a four-phase model of problem solving as a long-term 

learning by teaching and learning process:  

1. developing an intuitive habit of heuristic method and techniques through reflection at 

the end of problem solving 
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2. becoming aware of special heuristics on a basis of an example 

3. introducing deliberate practice phases on tasks of different difficulty 

4. context extension of strategy application  

Specifically, this research suggests that when conceptualizing professional development on 

problem solving following learning opportunities need to be considered: 

 allow for teacher’s growth of mathematical knowledge for teaching problem solving 

as well as to shape the forms of the knowledge produced 

 encourage teachers to use more challenging examples than they would normally use 

 provide teachers with activities that foster differentiation to reach every student’s po-

tential 

 provide opportunities that challenge teachers’ beliefs on student problem solving pre-

dispositions through “cognitive conflict” (e.g., through authentic videos). 

Adoption of new curriculum standards is not an easy task for teachers. As a community, we 

know what types of professional development support teachers so that their teaching practices 

would reflect the ongoing reforms. “Teacher development must be rooted in the ability of the 

individual teacher to doubt, reflect and reconstruct” (Wilson & Cooney, 2002, p. 132). That 

said, the reform of mathematics classroom is a hard, but a worthy cause where different facets 

have to be taken into consideration and addressed. Based on the growing body of knowledge, 

we hope that our conception of professional development would allow for transformation of 

teaching and learning as suggested by reformed curricula, organizations and research. 
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Abstract 

We have studied the teachers’ and their pupils questioning during a problem-

solving lesson when a nonstandard problem was used. Based on the videotaped 

lessons the teachers’ questions were classified into six categories (Task assign-

ment and marking the solution, Way of working, Progress of working, Asking for 

justification, Deepening of understanding, and Questions not related to the prob-

lem solving) using inductive content analysis. The teachers asked mostly about 

the task assignment, prompting the pupils to understand the problem and to start 

solving it. The number of teachers’ questions aiming at understanding varied sub-

stantially (0% - 47%), but their number was small on average. Pupils’ questions 

were classified into six categories. The average proportion of the pupils’questions 

from all the questions was about 30%. The number of teachers’ and pupils’ ques-

tions seems to be interrelated. 

Key words: open problem, teachers’ and pupils’ questions, Finnish primary school  

ZDM classification: C50, D50  

 

Introduction 

At all levels of the Finnish school system, the aim of learning mathematics is, according to the 

curriculum (NBE 2004), to understand mathematical structures and develop mathematical un-

derstanding, not merely the operations of mechanical calculation. Problem solving is consid-

ered to be a central tool in the development of mathematical thinking internationally (e.g. Ma-

son, Burton & Stacey 1982, Schoenfeld 1985, Stanic & Kilpatric 1988). Problem solving has 

even been set as one of the formal objectives for all school subjects in the Finnish national 

curriculum for comprehensive school (NBE 2004).  

This paper considers the use of problem solving – especially open problems – in teaching, and 

especially teachers’ questioning in guiding pupils during problem-solving lessons. We are al-

so interested in how pupils’ questions are related to the teacher’s questions. Based on the 

questions it is possible to get a view of the conversation during a problem-solving lesson and 

thus also about the learning possibilities that the teacher offers during the lesson. With her 
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questions the teacher has an influence on the process of how pupils concentrate and try to 

solve the given problem. The teacher leads and focuses pupils’ thinking, including ways of 

finding solutions and deepening their understanding with the questions. When posing a ques-

tion, pupils need to evaluate new information based on their own knowledge and beliefs. Thus 

the teacher can derive from pupils’ questions knowledge about how pupils have understood 

the topic. 

Here we will use a rather widely used characterization for a problem (cf. Kantowski 1980): a 

task is said to be a problem, if it demands that solvers must connect their earlier knowledge in 

a new way. If the problem solvers can immediately recognize the procedure needed for solv-

ing the task, it is for them a routine task (or a standard problem or an exercise). The concept 

of ‘problem’ is thus relative in terms of time and of the person concerned. In an open-ended 

problem (cf. Pehkonen 2004), the starting point is given, but the end is open, and therefore, 

there are usually many possible answers. An example of an open-ended task is as follows: 

“Divide a rectangule into three triangles. Can you find another solution?” 

Teacher’s questions 

The problem-solving literature includes advice on how a teacher could guide students’ prob-

lem-solving activity. The teacher can scaffold students’ problem solving in different ways 

(e.g., Anghileri 2006) or the teacher may use careful questioning to promote students’ reason-

ing (e.g., Sahin & Kulm 2008; Martino & Maher 1999).  

Teacher’s questions can be divided into different categories, for example based on their form 

(Myhill 2006). These types of questions are 

1) closed, factual questions, e.g. “What is 5 plus 5?” 

2) speculative questions that have no predetermined answer, e.g. questions about opinions  

3) process questions which invite children to explain their thinking, e.g. “How do you 

know that?” 

4) procedural questions which are related to the organization of the lesson, e.g. “Can you 

all see at the table?”   

It is important to notice that despite the form of the question its function can vary. Myhill 

(2006) divides teacher’s questions, based on their function, into 11 categories. For example 

the meaning of the factual question can vary from remembering the fact to pondering the 

meaning of the fact. Sahin and Kulm (2008) divide questions into three main types: 1) factual 
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questions which check, for example, that the pupil knows the central facts concerning the 

problem, 2) probing questions which ask for justification or explanation, and 3) guiding ques-

tions which help pupils ahead in their problem-solving process. Myhill’s process questions 

and Sahin and Kulm’s probing questions require pupils to explain their thinking.    

In problem solving, questions that enhance pupils’ ability to argue and justify their solutions 

are central. Martino and Maher (1999) have analysed these type of questions more closely. 

They can be divided into six categories: questions that 1) estimate pupils’ understanding, 2) 

direct pupils’ attention to an incomplete component in their argument, 3) sustain pupils’ inter-

est in the problem, 4) encourage mathematical justification, 5) direct pupils to consider justi-

fication produced by another pupil, and 6) promote generalization of  a solution to similar 

problem tasks. 

Research problems 

In this paper our aim is to discover what kind of questions teachers use during a problem-

solving lesson when pupils solve an open-ended problem. We are also interested in seeing 

how the pupils’ questions are related to the teacher’s questions. Thus the research questions 

can be formulated as follows: 

(1) What kind of questions do the teachers use when guiding their pupils during the  

problem- solving lesson? 

(2) What kind of questions do the pupils pose to the teacher during the problem-solving 

lesson? 

(3) How do the teachers’ and the pupils’ questions related to problem solving vary in  

different classrooms?  

Method 

This study is a part of the three-year follow-up Finland–Chile research project, financed by 

the Academy of Finland (project number #1135556). In the project, we try to develop a model 

for improving the level of pupils’ mathematical understanding by using open problems in 

mathematics teaching. Once a month on average, during the mathematics lessons of the ex-

perimental group (10 teachers), one open problem will be dealt with and recorded using video 

equipment. The same problems are also being used in Chile, but the comparison material is 

not part of this study and comes only later.  
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Here we consider the results of the task, Gary the Snail, that was implemented in September 

2011. Gary the snail is clearly a non-standard problem, and essentially needs creativity in or-

der to be solved:   

Gary the snail climbs a wall very slowly. Some days the snail ascends 10 cm, some 

days it ascends 20 cm, some days it sleeps and doesn’t move, and other days it is 

sound asleep and falls 10 cm. The height of the wall is 100 cm. At the end of the tenth 

day Gary the snail is at the middle of the height of the wall.  What could have been 

happening during the first 10 days? Show as many ways as possible. 

Eight teachers from the experimental group (Anna, Barbara, Cloe, Daisy, Ella, Flora, Grace, 

Hannah) and their fourth-grade pupils took part in this study.  All the teachers work in schools 

in the Helsinki capital area. All except Daisy have over 10 years of teaching experience. In 

the mathematics test (max 32 points) carried out at the beginning of the project, the pupils’  

results varied from 22.3 to 26.7 points. Barbara’s and Hannah’s pupils had the best results 

and, respectively, Grace’s and Cloe’s pupils had the lowest results on the test.  

During the lessons (45 minutes/lesson), one of the researchers (LN) recorded the teachers’ 

working. The videos were transcribed. Based on looking at the videos and reading the  

transcriptions the teachers’ questions were categorized. After creating the categories the data 

was re-read and the categorization was checked. This was done several times. After this some 

categories which contained similar ideas were joined together and the final categories were 

decided. When all the questions were categorized the frequencies were counted. One  

researcher (AK) made the classification and another researcher (MA) made the parallel  

coding. Uniformity of the teachers’ questions scored 97% and uniformity of the pupils’ ques-

tions scored 94%. The analysis is qualitative and it can be characterized as inductive content 

analysis (cf. Patton 2002) because we tried to make sense of the situation without imposing 

any pre-existing expectations. Pearson’s correlation and regression analysis were used to find 

out the relation between the teachers’ and the pupils’ questions. 

The teachers’ lesson plans were also used as research data. Noticeable is that Anna and  

Barbara had already written in their lesson plan that they were not going to guide their pupils. 

They wanted to see how the pupils would manage to solve the problem by themselves. 

Results 

In the results we first analyze the teachers’ questions, then the questions that the pupils pose 

to the teachers and, finally, the relationship between these questions. 
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Teachers’ questions 

The teachers asked plenty of questions already from the beginning of the lesson. They guided 

the pupils mostly just by asking questions that were connected to the information in the task 

assignment. Some of the questions were directed to the whole class, whereas some of them 

were clearly focused on only one pupil at a time. At the end of the lesson some of the teachers 

used questioning when they went through the task and its different solutions. The teachers’ 

questions were classified into the following six categories: A) Task assignment and marking 

the solution, B) Way of working, C) Progress of working, D) Asking for justification, E) 

Deepening of understanding, and F) The others, i.e. incoherent or unconnected to problem 

solving. Often the teacher repeated the same question many times during the lesson. She 

might have presented her question first to several pairs in turn and finally to the whole class in 

the common discussion. However, here a question consists of a statement that may contain 

more than one interrogative or the repetition of the same question many times and using dif-

ferent wording.  

The questions in category A, Task assignment and marking the solution, formed a consid-

erable portion of the teachers’ questions. For example, most of Anna’s and Flora’s questions 

belong to this category. Many of the teachers’ questions pertained to both task assignment and 

the marking of the solution simultaneously. These questions were asked immediately in the 

beginning of the lesson when the task was read or when the teacher was walking around  

helping the pupils. With these questions the teachers encouraged the pupils to return to the 

task assignment and rethink the conditions in it.  With their questions the teachers also guided 

the pupils to write down their solutions. In part of the questions the teachers helped the pupils 

to solve the problem by looking at one day at a time.   

“But, what is written in the instruction? How much could it ascend?” (Barbara) 

“Here, it is the second day. What is happening during it?” (Grace) 

“How did you mark them?” (Daisy) 

The questions in category B, The way of working, are related to how the pupils started to 

solve the problem. In their questions the teachers commented on the strategy that the pupils 

had chosen to solve the problem, and proposed other alternative ways.  In this category there 

are also the questions with which the teacher urges the pupils to think and plan their solution 

process.   

“Is there some way how you could draw it?” (Grace) 

“Yees, how do you think that division could have been used here?” (Barbara) 
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“What…, how could you solve this?” (Grace) 

Also the questions in category C, Progress in working, were presented often, especially 

when the teacher was walking around and helping the pupils. The teachers used these ques-

tions often as openings for discussion by asking the pupils to tell about their working methods 

and their solutions. In this category there are also the questions with which the teacher dis-

covered whether the pupils had understood how to work with the problem.  

“How many different alternatives have you already found?” (Anna) 

“Did quite many of you now catch the plot?” (Daisy) 

With the questions belonging to category D, Asking for justification, the teachers guided the 

pupils to tell what they were thinking in solving the problem. These questions turned up espe-

cially when, near the end of the lesson, the pupils presented their solutions to the other pupils. 

The teachers asked the pupils also to justify the way they had found their solution. In some 

cases the teachers tried to help the pupils to find the error in their suggestion for a solution. In 

the data there were also some questions that were related to the pupils’ feelings and to facing 

the nonstandard problem.   

“Yees, so how did you from this first solution ... get this second solution?” (Hannah) 

“Explain to me why, if you make the mark here and not to this line, how does it in-

crease the number of your possibilities?” (Cloe) 

The teacher used such comments to encourage the pupils to try to approach the problem in 

some new way or to find more solutions, and these were classified into category E, Deepen-

ing of understanding. Also included in this category were those questions with which the 

teacher guided the pupils to ponder in a larger and deeper way in finding a proper solution. 

For example, Hannah encouraged the pupils to think how they could modify a new solution 

from the solution that they had already found. The questions in this category have been  

chosen by looking at the whole event: For example the teacher’s question on whether the snail 

could move up along the wall more than 50 cm on one day and then descend, totally changed 

one pupil’s way of thinking about the problem. 

“You found thirteen, but do you mean that you found all the possible alternatives?” 

(Barbara) 

“What was among these different ways, don’t think only your own way … What was 

the easiest way to find the solution?” (Grace) 

The distribution of the question categories among the teachers is shown in Table 1. The 

teachers were clearly quite different both as to the number of questions they used and also as 

to what kind of questions they asked. During this problem-solving lesson the total number of 
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questions per teacher varies from 16 to 90. Half of the questions were classified as Task as-

signment and marking the solution (A). These questions were mostly factual (e.g. “What will 

happen to the snail during deep sleep?”). Questions that were related to the working process 

(B & C) were partly factual and partly guiding (e.g. “Is there a way how you could draw it?”) 

(cf. Myhill 2006; Sahin & Kulm 2008).  

The teachers differed very much also in the number of questions (D & E) that promote under-

standing. Some of the questions required justifications and the others aimed to deepen their 

understanding by generalizing the problem (cf. Martino & Maher). Anna and Daisy did not 

ask these types of questions at all whereas Hannah asked up to 72 such questions which is  

almost half of her total amount of questions. Most of the questions that encouraged pupils to 

justify their thinking were process questions but some of them were also speculative (e.g. 

“But now I ask again the same question: what is a problem? Is it only in mathematics where 

there are those problems?”).  

 

Table 1. The distribution of the number of the teachers’ questions in the categories A) Task 

assignment and marking the solution, B) Way of working, C) Progress of working, D) Asking 

for justification, E) Deepening of understanding, and F) The others. The percentage in the 

brackets is calculated from the teacher’s total questions. 

Teacher A B C D E F Total 

Anna 11 (69) 0 1 (6) 0 0 4(25) 16 (100) 

Barbara 5 (26) 1 (5) 5 (26) 4 (21) 2 (11) 2(11) 19 (100) 

Cloe 15 (63) 0  5 (21) 3 (13) 0 1 (4) 24 (100) 

Daisy 12 (46) 1 (4) 5 (19) 0 0 8(31) 26 (100) 

Ella 19 (54) 4 (11) 4 (11) 2 (6) 2 (6) 4(11) 35 (100) 

Flora 43 (74) 3 (5) 4 (7) 3 (5) 0 5 (9) 58 (100) 

Grace 47 (68) 3 (4) 2 (3) 9 (13) 5 (7) 4 (5) 69 (100) 

Hannah 18 (20) 7 (8) 18 (20) 27 (30) 15 (17) 5 (6) 90 (100) 

Total 170 (50) 19 (6) 44(13) 48 (14) 24 (7) 33 (10) 338 (100) 

Pupils’ questions to the teacher 

We were also interested in examining the pupils’ questions in order to get a better overwiew 

of the whole process of questioning in the different classes. The pupils’ questions which they 

posed to their teachers were classified in the following six categories: I) Understanding the 
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task and marking the solution, II) Aim of the task, III) Way of working, IV) Checking of  

understanding, V) Request for help, and VI) The others, i.e. incoherent or unconnected to 

open-ended problem solving. In Table 2 we present a summary of pupils’ questions in  

different classrooms.  

Table 2. The distribution of pupils’ questions in different categories: I) Understanding the task 

and marking the solution, II) Aim of the task, III) Way of working, IV) Checking of under-

standing, V) Request for help, and VI) Other questions. 

Classroom I II III IV V VI Total 

Anna 1 2 1 0 0 2 6 

Barbara 3 1 1 0 0 2 7 

Cloe 13 2 7 1 3 2 28 

Daisy 7 1 6 0 5 14 33 

Ella 4 3 3 3 0 5 18 

Flora 22 5 5 4 2 4 42 

Grace 4 1 1 1 0 9 16 

Hannah 6 2 2 0 1 2 13 

Total 60 17 26 9 11 40 163 

 

Most of the pupils’ questions were classified in category I) Understanding the task and  

marking the solution.  

 “Is the starting point always there?” (Cecilia’s pupil) 

“Can I put here that it climbs first for example one centimeter and then eight?”  

(Hannah’s pupil) 

Questions related to the target of the task (category II) pupils clarified and confirmed that they 

had understood the idea of the problem. These kinds of questions were also posed later when 

they were solving the problem. 

 “Am I supposed to do the same calculation again?” (Grace’s pupil) 

”So is the purpose here now to invent new ways?” (Hannah’s pupil) 

Students were figuring out how they should work during the lesson and what they should do 

next by posing questions classified in the category Way of working (category III). These 

questions were not related to finding the solution or marking the solution. Instead they were 

connected to the ways of working, pair work or working equipment. 

 “Can I do this in a group?” (Grace’s pupil) 
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 “So can we have another paper?” (Cloe’s pupil) 

Pupils asked teachers during the lessons to comment if their solution was correct. These kinds 

of questions were classified in category IV Checking of understanding. 

 “Is this wrong?” (Ella’s pupil) 

 “So is this good?” (Flora’s pupil) 

With questions containing Request for help (category V) pupils were asking the teacher to 

come and help them. 

 “Can you come here for a second?” (Cloe’s pupil) 

In category VI The others, the pupils’ questions were incoherent, unconnected to the problem 

or to solving it, or to anything related to the working at the problem. 

 “What? Is that a camera?” (Daisy’s pupil) 

 “How did you then translate that from Spanish?”(Grace’s pupil) 

The relation between teachers’ and pupils’ questions 

The total number of questions asked in the different classrooms varied quite a lot.  During one 

lesson in different classrooms, pupils posed from 6 to 42 questions, whereas the teachers 

posed from 16 to 90 questions. We wanted to find out the connection between the number of 

the teachers’ and pupils’ questions. Would it be possible that teachers’ questions also promote 

pupils to ask more questions? Because we were especially interested in the questions that 

were related to solving the problem, we eliminated the category ‘The others’ from both the 

teachers’ and the pupils’ questions (see Table 3). 

Table 3. Number of questions related to problem solving in different classrooms 

Teacher Teachers’ 

questions 

Pupils’ 

questions 

The proportion of pupils’ 

questions of all questions 

Anna 12 4 25% 

Barbara 17 5 23% 

Cloe 23 26 53% 

Daisy 18 19 51% 

Ella 31 13 30% 

Flora 53 38 42% 

Grace 65 7 10% 

Hannah 85 11 11% 

Total 304 134 31% 
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From Table 3 it can be concluded that in most of the classes, when the number of the  

teacher’s questions increases it is also observed that the number of the pupils’ questions to the 

teacher increases.  Two classrooms (Grace’s and Hannah’s) are exceptions. In these class-

rooms the teacher asks many questions, but the pupils ask only a few. The proportion of the 

pupils’ questions from all the questions is only about 10% when the average is about 30%. 

Based on the video material, we found that in these classrooms the atmosphere was very  

authoritarian and therefore the pupils were not so ready to ask questions.  It could also be pos-

sible that the pupils did not have time to ask questions, because they were kept busy in  

answering the teachers’ questions. However, this explanation was not true in these cases.  

During the lesson, Hannah asked a lot of questions with which she guided her pupils in the 

right direction to their solutions, and she was not expecting any answers from them. In the 

next example Hannah guides one group of pupils: “Quite good, you have found one solution. 

Can you find another?” She continues with another group: “Could you take advantage of 

this? You have one good model here. Think how you could advance from it?” When Hannah 

moves from one group to another the pupils ponder her questions rather than pose new ones. 

Whereas Grace prompts her pupils to think by themselves and therefore her pupils do not 

bother to ask any questions: “It is wrong then. It has moved a little too much. What do you 

do? How do you correct it? This is zero…mm…you must take this away… You must probably 

correct some number. How would you correct it? I don’t tell you because you have not  

counted.” 

Anna and Barbara asked very few questions. They had already written in their lesson plans 

that this time they were going to try seeing how the pupils would manage solving the problem 

without guidance. On the basis of this plan we may also therefore conclude that the pupils 

asked very few questions.  

In Cloe’s, Daisy’s and Flora’s classrooms the proportion between the teacher’s and the pupils’ 

questions seems to be quite the same. Based on the video material, the atmosphere in the 

classrooms was confidential during all these lessons.  It seemed to be easy for the pupils to 

approach their teacher and ask questions, and the teacher’s response to the questions was  

appropriate.   

Ella seems to be an average teacher both as to the total number of questions and to the distri-

bution of the questions between the teacher and the pupils. However, she and her class seem 

not to represent a typical situation in this research group.   

The relation between teachers’ and pupils’ questions related to problem solving is presented 

graphically in figure 1. When we leave two teachers (G and H) out of the examination  
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because of their exceptional behavior we get a linear correlation of 0.83 between the number 

of teachers’ and pupils’ questions. On this area the model describing the relation between 

questions is linear (R Square Change =.671
a 
, sig. F Change = .046). Coefficient of determina-

tion is 67% which means that the number of teachers’ questions explain 67% of the number of 

pupils’ questions (or the other way around).  It appears that, when teachers’ questions increase 

over some point, the pupils’ questions start to decline. If we take into account all teachers, we 

receive a curved, i.e. parable model (y = -0.0102x
2
+0.9724x, R

2
=0.304) and for the coeffi-

cient of determination 30%. Because the linear model explains more of the variation than the 

curved one, we choose the first one. This decision is supported by the observation that 

Grace’s and Hannah’s actions differ from the other teachers’ actions during the problem-

solving lesson.  

 

Figure 1. The relation between the teachers’ and the pupils’ questions. 

Discussion 

The teachers asked most about the task assignment because the pupils had difficulties to get 

started on the problem. The teachers asked plenty of good questions with which they  

prompted the pupils to understand the problem and did not just say what they should do. The 

teachers asked a very different number of questions during the lesson. The difference between 

the pupils’ knowledge between different classrooms does not explain the number of questions 

because, based on the mathematics test done at the beginning of the project, there were many 

(and respectively a few) questions in the classrooms of both good and poor achieving pupils. 

The number of questions depends therefore evidently on the teachers’ philosophy of teaching 

and on the working culture of the class. 

It is also important to pay attention to the quality of the questions and not only to their num-

ber. On average there were, however, only a few questions that aimed specifically at under-
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standing. The proportion of these questions varied a lot (0% - 47%) according to the teacher. 

From the viewpoint of promoting mathematical thinking, it would be important that there 

were more questions aimed at judging and deepening the solutions. It would be interesting to 

see whether the teachers’ questions will change during the research project, after the teachers 

have had more guidance and experience in teaching problem solving.  

It is also important to find out what kind of  questions and answers to pupils’ questions  en-

courages the pupils to ask questions that promote the problem-solving process and therefore 

contribute to a fruitful discussion in a classroom. Later we shall concentrate more explicitly 

on studying this process with the video material about the communication in the classrooms. 

Furthermore, in the future we shall also look at the pupils’ achievements and compare them 

with the discussions in the classrooms.  
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Abstract 

If you see or hear the word didactic, usually a primary or secondary school comes to 

your mind as a place where it is used. But at least as important in higher education too 

the choice of the most appropriate method to be more effective in educating. My choice 

of topic partly originates from the continuing decline in the results of college students 

that can be observed for several years by now, and is a general trend in higher education 

but is especially true for mastering scientific disciplines. On the other hand because of 

the continuously decreasing number of class hours and other reasons, there is hardly 

enough time and opportunity available, especially in terms of teaching of probability, to 

carry out or at least to demonstrate teaching experiments of acceptable quantity and 

quality. Therefore those methods and techniques allowing the students to get familiar 

with more concepts and see their practical application can have a positive effect on 

mastering the theoretical concepts. For the analysis of this topic my work focuses on a 

field of probability theory (the analysis of the longest runs), which can be easily 

understood by the students and can be linked to their everyday experiences and thus 

provide a way for easy comparison. There is no exact andclosed expression for the 

distribution function describing the length of the longest runs. Thus for the discussion of 

this particular topic the differences and the applicability between the various methods 

becomes more obvious. Observing these differences provides a deeper understanding of 

the different terms, the applications of the different techniques for the topic (the longest 

runs) can be demonstrated appropriately.  

Key words and phrases: longest run, recursive formula, asymptotic theorem, simulation  

ZDM classification: K108, K508, U708  

 

1. Introduction 

In my study I present a method that helps to understand the concepts and techniques 

mentioned in the title, which can be a useful didactic tool for colleagues teaching in academic 

institutions. The recursive expressions give exact values but they are not closed expressions 

and calculating the exact values after a greater number of elements can sometimes be 

problematic even when calculating with a computer. The asymptotic values become more 

accurate with the increase in the number of constituents (with an increasing n ) however they 
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only provide approximate values, whereas repeated studies of simulation experiments provide 

average results. These terms and definitions can be applied in other fields of mathematics by 

the students.  

Although in various fields of mathematics the basic terminology, definitions, the introduction 

of computations can be based upon everyday observations and experiences to a great extent, 

however in the case of probably calculations our situation is a little more difficult. In the 

introduction of the article by Tibor Nemetz [9] the author writes the following: "Most of the 

time the students have vague understanding how to interpret an uncertain event, etc.; quite 

frequently their judgment on random, large scale phenomena is wrong or rather they cannot 

comprehend the existence or application of such laws." Furthermore, as Alfréd Rényi, [11] the 

founder of the Hungarian school of probability writes in many cases even the teachers are 

reluctant to present these experiments. "Statistical principles can be demonstrated by data take 

from books and newspapers; however it has a greater effect on students if they obtain these 

results presented to them or, even better if the results originate fromexperiments performed by 

them. Some teachers do not agree with this as they fear that the experiments will not yield 

results that they expect as it can happen from the nature of these experiments. I don’t think 

that this fear is justified and if the teacher understands probability calculus well, then he or 

she cannot end up in an uncomfortable situation. Naturally the teacher has to react quickly as 

the evaluation of results, which even the teacher could not foresee is more difficult than the 

analysis ofexamples which were evaluated in advance by the teacher." Of course these 

experiments will provide further experiences not only to the students but to the instructor as 

well, which can be a very important point of view especially for the discussion of random 

events.  

In higher education the general opinion of the teachers is that the knowledge of students 

displays greater insufficiency and the general performance is dropping every year. Many 

institutions provide preparation courses and additional coaching courses to treat the problem; 

however I find that it is also just as important to understand the terms, definitions and get 

proficient with their application during BA education. Everybody knows the obvious fact that 

there is a direct relationship between theoreticalknowledge and problem solving skills it is 

justified to expect that results will improve with the better understanding of definitions. 

Recursive formulae, asymptotic theorems and simulations play an important role in several 

fields of math-teaching in higher education. But the exact knowledge of these notions leaves a 

lot to be desired. The study of some illustrative problems may help to understand them. While 

solving these problems students have an opportunity to compare these definitions.   
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In this paper I shall use the well-known coin tossing experiment to compare the results of 

recursive formulae, asymptotic theorems and computer simulations. In connection with coin 

tossing we examine the length of the longest run. For a sequence of independent coin tosses 

with p  (0 1p  ), the longest run of consecutive heads in the first n  tosses is a natural 

object of study. In my work the longest run means the longest sequence of the same objects, 

for example the longest head-run means the longest sequence among the sequences of 

homogeneous heads, which is not interrupted by tail. My research includes the examination of 

the length of the longest head-run and the length of the longest whatever - head or tail - run, 

studying fare coin. (I have studied the event of biased coin too, so if you are interested in it do 

not hesitate to write to me to discuss about that.)  

 

The following well-known example by T. Varga can be an interesting introduction to the 

problem for students. We can read this for example in Révész [12]. A class of school children 

is divided into two sections. In one of them each child is given a coin which he or she throws 

two hundred times, recording the resulting head and tail sequence on a piece of paper. In the 

other section the children do not receive coins but are told instead that they should try to write 

down a ’random’ head and tail sequence of length in 200 . Collecting and mixing all the slips 

of paper, the teacher then tries to subdivide them into their original groups. Most of the time 

he succeeds quite well. His secret is that he has observed the following. In a randomly 

produced sequence of length in two hundred, there are, say, head-runs of length seven 

(knowing Rényi’s log 2200  result). On the other hand, he has also observed that most of those 

children who had to write down an imaginary random sequence are usually afraid ofwriting 

down runs of longer than four. Hence, in order to find the slips coming from the coin tossing 

group, he simply selects the ones which contain runs longer than five. When I had the 

privilege of meeting professor Révész, he talked about the continuation of Varga’s 

experiment. He made his students acquainted with Varga’s experiment and the result of it. 

Then they made the trial again. Professor Révész was successful in subdividing the slips of 

paper with quite good accuracy again. His secret was very easy. The students focused on the 

length of pure head run for example, but they did not pay attention to the length of pure tail 

run or the length of the head-tail pairs run. These experiments led us to ask the following 

questions. What is the length ofthe longest head run or the longest whatever run in coin 

tossing?  

For the investigation of the mentioned definitions (recursive formula, asymptotic theorem, 

simulation) our chosen field - coin tossing - is perfect in many respects. We know that there is 
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no exact and closed formula to give the length of the longest run in case of any n . The 

recursive formulae are exact, - they give correct results - but using them for large n , is very 

time- and storage-consuming even if we use very good computer. For large n  we can use the 

asymptotic theorems, but these give only approaching results. And finally, the simulation 

gives an average value from a lot of repetitions of the trial. Considering these, we can 

examine the meaning of these definitions by studying the coin tossing trial. Our graphs will 

show the differences between the values in case of small and large n  too and the limits of the 

scope of the notions.  

Consider n  independent tosses of a fair coin, and let nR  represent the length of the longest 

run of heads, and similarly let nR  be the length of the longest whatever (head or tail) run. As 

we have got a regular (fair) coin, the probability ofhead-tossing equals 0 5p   , and of course 

the probability of tail-tossing is equal to 1 0 5q p    . The problem facing us is the 

following. What is the length of the longest head or whatever run?  

2. Recursive formulae 

Sometimes it is difficult to define an object explicitly. However, it may be easy to define the 

object in terms of itself. We define a function or a special series with a recursive formula with 

defining the starting value (or values) and generally we provide a formula for calculating the 

subsequent values using the previous value(s) with various operations. Thus the process has 

two important components. First we need to define the starting value (values) which are the 

first elements of our recursive series. Then we need to supply the correspondence which 

demonstrates how the subsequent members are derived from the previous members of the  

series. It is important to keep in mind that recursive formulas always yield accurate results 

and they are not average or approximate values. The application of recursive formulas has one 

disadvantage and barrier at the same time: the calculation of the thn  element with an 

increasing n  becomes complicated even with the application of a computer. The recursive 

functions, which form a class of computable functions, take their name from the process of 

’recurrence’ or ’recursion’. In its most general numerical form the recursion process consists 

in defining the value of a function by using other - the previous - valuesof the same function. 

A recursive sequence is a sequence of numbers ( )f n  indexed by an integer n  and generated 

by solving a recurrence equation.   

And now back to our coin tossing problem.  
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2.1. Longest head run 

Let nR  represent the length of the longest run of heads and let ( )nA x  be the number of 

sequences of length n  in which the longest head run does not exceed x . The distribution 

function of nR  is  

 
( )

( ) ( )
2
n

n n n

A x
F x P R x    (1) 

First we have to give the initial condition that tells where the sequence starts, then the 

recursion formula that tells how any term of the sequence relates to the preceding term. Using 

the results of Schilling [13], we have the following recursive formula for ( )nA x   

 
1

0

( ) if
( )

2 if 0

x

n j
jn

n

A x n x
A x

n x

 



  

 
    


 (2) 

To see how this works, consider the case in which the longest head run consists of at most four 

heads. If 4n , then clearly (4) 2n

nA   since any outcome is a favorable one. For 4n , each 

favorable sequence begins with either T, HT, HHT, HHHT or HHHHT and is followed by a 

string having not more than four consecutive heads. Thus,  

1 2 3 4 5(4) (4) (4) (4) (4) (4)n n n n n nA A A A A A          for 4n .  

From this we can calculate the values of (4)nA :  

n 0 1 2 3 4 5 6 7 8 … 

(4)nA  1 2 4 8 16 31 61 120 236 … 

 

Remark 1. For 1 2 3n      the number (1)nA  of sequences of length n  where n  does not 

continue two consecutive heads is the ( 2)n nd Fibonacci number.  

Remark 2. The values of ( )nA k  can be given with the help of thk  degree Fibonacci numbers. 

Moreover, we can study the case of biased coins using the application of thk  degree Fibonacci 

polynomials. (See Philippou-Makri, [10].)  

2.2 Longest whatever run 

Consider n  independent tosses of a fair coin, and let nR  represent the length of the  

longest run of heads or tails (whatever). If ( )nB x  is the number of sequences of length n   

in which the longest run does not exceed x , then the (cumulative) distribution function is 

( )

2
( ) ( ) n

n

B x

n nF x P R x   . Schilling [13] has proved that 1( ) 2 ( 1)n nB x A x  , for 1x  .   
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To prove it consider a sequence of length n  consisting of signs H and T (representing ’head’ 

and ’tail’, respectively). Write below of this sequence another sequence of signs S and D 

(representing ’same’ and ’different’, respectively). We write S if twoconsecutive signs in the 

first sequence are the same, and write D if they are different. Now a run of length 1x  

consisting of signs S represents a run of length x  in the first sequence. We also see that any 

sequence containing signs S and D belongs to two sequences of signs H and T. Finally, 

observe that 1( 1)nA x   can be considered as the number of sequences of length 1n  and 

containing signs S and D but not having S-run of length x . (We need a factor 2, because the 

longest run can occur from heads or from tails same times.)   

The example below shows one of the strings that contributes to 13(4)B :  

H  H  H  T  H  T  H  T  T  T  T  H  H 

 S  S  D  D  D  D  D  S  S  S  D  S  

So we can reduce this case to the case of the longest head run  

 1 1
11

( ) 2 ( 1) ( 1)
( ) ( ) ( 1)

2 2 2
n n n

n n nn n n

B x A x A x
F x P R x F x 



 
         (3) 

The implication of (3) is that for n  tosses of a fair coin the longest run tends to be one longer 

than the longest run of heads alone.  

3. Asymptotic theorems 

Asymptotic behavior is a property that certain mathematical expressions demonstrate if the 

subsequent values of a series approach the values of a function closer and closer, but they 

never actually reach it, even in an infinite number of steps. Therefore in case of large n the 

asymptotic values are so close to the real values that we can apply them with confidence if the 

real values cannot be defined accurately, or can only be defined in a difficult and complicated 

manner.   

For the longest head run we have strong limit theorems and results on the limiting behavior of 

the distribution. A well-known theorem of Rényi says that the length of the longest run in n  

tosses of a fair coin is about 2log n . This was generalized to excessive blocks by the Erdős-

Rényi [4] laws of large numbers.  

For the limiting behavior of the distributions there are several known results. Let us see the 

case of the longest head run. The asymptotic behavior of nR  is described by the following 

theorem.  
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Theorem 1. Földes (1979) [5]. For any integer k  we have  

      21 log

2log exp 2 (1)
k n

nP R n k o
   
 
 
 

       (4) 

where [ ]a  denotes the integer part of a  and [ ]{a} a a  .  

Similarly we can see the asymptotic behavior of nR . Using the above theorem of Földes and 

(3) we have the following asymptotic result for nR .   

Theorem 2. For any integer k  we have  

      2log ( 1)

2log ( 1) exp 2 (1)
k n

nP n k oR
   
 
 
 

        (5) 

where [ ]a  denotes the integer part of a  and [ ]{a} a a  .  

4. Simulation 

The mathematical simulation is known as the Monte Carlo method, it is called after the city in 

the Monaco Principality, because of roulette, a simple random number generator. The name 

and the systematic development of this method dates from about 1944 (see [7] and [8]). 

Simulation methods can play an important role in teaching several topics not only 

mathematics. We can identify the average value of a random variable if we do not know, or if 

cannot or are not willing to perform complex calculations to define the distribution function. 

According to the law of large numbers if we supply a sufficient number of samples the 

resulting average value is going to be close to the unknown real value. Using simulation the 

quoted law can also be more comprehensible for the students. We can easily show that if we 

do not perform a sufficient number of repeated measurements we cannot obtain good results. 

However if we perform a sufficiently large (at least in the order of thousands) repeated 

measurement (or we perform them using a computer) then the resulting average values will be 

a really good approximation of the real values.   

 

Here we deal with the simplest version of the stochastic simulation. We need the numerical 

value of a quantity p . Moreover, p  can be considered as the probability of an event A : 

( )P A p . Repeat the experiment N  times and calculate the relative frequency of A . Denote 

it by Ak

N . Then, by the Bernoulli law of large numbers, Ak

N
p  almost surely as N  . 

However, usually we make our experiment on a computer. Using our computer programme, 

we build the experiment, and we record if A  occurs or not. Repeat the computer experiment 

N  times. It means that we run our programme N  times with N  consecutive random 
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numbers. However, as the coin tossing experiment is a random experiment itself, wedevelop 

our computer model as follows. Using the first n  random numbers, we can perform the coin 

tossing experiment of length n . Then repeat it N  times ( N  is a large integer, 1000N  , 

say). Therefore, for any fixed n , the distribution of nR  can be obtained as N  . (It is an 

important issue, because in the previous section we considered the asymptotic distribution of 

nR , as n.)  

5. Comparison of numerical results, conclusions 

Now let us see our problem. For numerical calculations we used MATLAB software and a 

high-capacity PC (INTEL Core Quad Q9550 processor, 4Gb. DDR3 memory). We calculated 

the distribution of nR  and nR . We considered the precise values obtained by recursions, the 

asymptotic values offered by asymptotic theorems, and used simulation with 20,000 

repetitions. On the figures below     denotes the result of the recursion,  o   belongs to the 

asymptotic result, while the histogram shows the relative frequencies calculated by 

simulation. On the left side you can see the case of the longest head run and on the right side 

you can see the case of the longest whatever run.  

 
Distribution of the longest head run  Distribution of the longest run  

0 5 50p n       0 5 50p n       
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Distribution of the longest head run  Distribution of the longest run  

0 5 250p n       0 5 250p n       

 

 

 
Distribution of the longest head run  Distribution of the longest run  

0 5 1000p n       0 5 1000p n       
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Distribution of the longest head run  Distribution of the longest run  

0 5 3100p n       0 5 3100p n       

 

 
Distribution of the longest head run  Distribution of the longest run  

0 5 50000p n       0 5 50000p n       
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First we emphasize that the precise values of the distributions are given by the recursive 

formulae. The practical drawbacks of recursive formulae are the following. They are limited 

by the capacity of the computer and they can be influenced by numerical errors. On the other 

hand, asymptotic theorems always offer approximations but they are easy to compute. The 

approximations are quite bad for a small n  but they are almost precise for a large n . Finally, 

simulation always gives random approximations but it is quite precise if the number of 

repetitions is large. The above figures show the properties of the procedures mentioned. For a 

fair coin we studied short trials ( 50n  ), medium size trials ( 250n ), long trials, ( 1000n  

and 3100n  ) and very long trials ( 50 000n   ).  

 

If n  is small or medium sized, we can see that the recursive results are closer to the simulated 

values, than the results given by asymptotic theorems. Although we can say that if n  is small, 

the recursive algorithm is fast, but it slows down if n  increases. The next table demonstrates 

this statement showing some running times.  

n repet. running time 

100,000  20,000 773.575832 s.  

10,000  20,000 31.795056 s.  

5,000  20,000 14.398654 s.  

3,100  20,000 9.009479 s.  

1,000  20,000 3.984981 s.  

500  20,000 3.240019 s.  

250  20,000 2.412824 s.  

50  20,000 2.092010 s.  

30  20,000 1.935557 s.   

For a large n  the asymptotic values are closer to the simulated results, so we can use them 

instead of the recursive values. The asymptotic value is a good approximation if 1000n , 

and it is practically precise if 10 000n  .  

The figures show that the distribution of nR  can practically be obtained from the distribution 

of nR  by shifting it to the right by 1, as we have seen in (3).  

6. The St. Petersburg Paradox 

Almost the most common question of our students is the following. Where and how can I use, 

apply this or that theorem? What is the economic application of this or that? To show some 

financial and economic aspects of the studied field is very useful in teaching of Business 

Mathematics. In connection with the previous part, we should examine a very interesting pa-
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radox, the St. Petersburg paradox. What is this paradox? Peter and Paul play a game with a 

fair coin. (The probability of head-tosses and the probability of tail-tosses are the same: 

50 50% .) Paul tosses the coin and Peter pays 2  ducats (or euros, or dollars, or what you 

want) if it shows head on the first toss, 4  ducats if the first head appears on the second toss, 8  

ducats if the first head appears on the third toss, and so on. So Peter pays 2k  ducats if the first 

head appears only on the thk  toss. How much should Peter charge Paul as an entrance fee to 

this game so that the game will be fair? (Fair game means that neither of gamblers wins or 

loses any money on average.) Surprisingly, the game cannot be made fair, no matter how 

large the entrance fee is. Paul is always in a wining position, but as Nicolaus Bernoulli wrote 

in the XVIII. century [3]: "there ought not be asane man who would not happily sell his 

chance for forty ducats". How can we solve this paradox? Let us see our data in the following 

table, where ix  means the amount of ducats if the first head appears on the i th toss and ip  

means the probability of this event. Even the not excellent students can calculate these values, 

so this can rewarding ad for them.  

Payoff values and probabilities   

ix  2 4 8 16 32 … 2k  … 

ip  1/2 2(1 2)  3(1 2)  4(1 2)  5(1 2)  … (1 2)k  … 

 

For example, let us see the first column. Paul gets 2  ducats if the first tossing is head. The 

probability of this equals 0 5 . On the second column we can see that Paul gets 4  ducats if the 

first toss is tail and only the second one is head. The probability of this equals 0 5  times 0 5  

(because the tosses are independent). Following this, Paul gets 2k  ducats if the first 1k   

tosses are tails but the thk  toss is head. The probability of this equals 1(1 2) (1 2) (1 2)k k     . 

And we can continue it to infinite. This is right, because the sum of the probabilities equals: 

1
(1 2) 1k

k




  . Now we can calculate the expected value of the payoffs, which will be 

infinite.  

 2 3

1 1

( ) 2 1 2 4 (1 2) 8 (1 2) 2 (1 2) 1k k

i i
i i

E X x p … …
 

 

                   (6) 

So this means that Paul needs to pay an infinite value to Peter as an entrance fee. However, 

this is a requirement to which almost no rational person would agree to or be able to satisfy. 

We can see this, because if 2x  then the probability of winning at least x  value equals the 
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following: 
2 2

[log ] [log ]

2 1
( ) (1 2) (1 2) 1 (1 2)k

x xk k

k x k
P X x

  
          where [ ]a  means the 

integer part of a : [ ]a max{b Z b a}   . Using this, we can give the distribution function:  

 
2[ ]

0 if 2
( ) ( )

1 2 if 2log x

x
F x P X x

x

  
  

   
 (7) 

So, 2[log ]( ) 2 xP X x    as for example the probability of winning greater than 40  ducats 

equals ( 40) 1 32 0 03125P X      , or the probability of winning a "much bigger" value, for 

example the probability of winning a value which is greater than 32 000  ducats equals about 

0 00006 . So Paul does not want to risk a big value (not even 40  ducats!) to enter the game. 

Although the calculation of Paul’s expectation is mathematically correct, the paradoxical 

conclusion was regarded by many early researchers of probability as unacceptable. It is worth 

to mention Keynes’s words [6]: "We are unwilling to be Paul, partly because we do not 

believe Peter will pay us if we have good fortune in the tossing, partly because we do not 

know what we should do with so much money … if we won it, partly because we do not 

believe we should ever win it, and partly because we do not think would be a rational act to 

risk an infinite sum or even a very large sum for an infinitely larger one, whose attainment is 

infinitely unlikely." We can ask students about their opinion of the amount of the entrance 

fee. For example: Who would like to pay (or to accept) for example 30 ducats for the game? 

The answers can be very interesting, surprising and varied. If the teachers has got enough 

time, to talk about the history and some previous solutions of the paradox can be very useful. 

There are some students who are not good in maths but they are interested in history. We can 

give some research works for them in this theme. (It has got a huge but very interesting 

history, so students hopefully will enjoy this work.)  

Let us make calculation and simulation for studying the St. Petersburg game. Suppose that we 

play only finite times, for example 102 1024n   . As the probability of head-tossing equals 

0 5 , we expect that half of the games, 512  games complete afterthe first tossing. The amount 

of payoff equals 2 . We can say the same for the remaining games, so the half of the 

remaining games complete after the next (second) tossing. This means that the quarter of 

games 216  games complete after the second tossing. The amount of payoff equals 4  in this 

case. Continuing this line of thought, we can say that only the last game will continue after 

the 10th  tossing. This concrete case can easily be studied with even weaker students also and 

the general case will be more understandable.  
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The first head occurs on the thk  tossing (k) 1 2 3 4 5 6 7 8 9 10 

Number of completed games 512 256 128 64 32 16 8 4 2 1 

Payoff ( 2k ) 2 4 8 16 32 64 128 256 512 1024 

Table 1. Playing St. Petersburg game 1024 times 

Let us see the average of payoffs: 
2 10

10

512 2 256 2 12 1024
10242

10( ) 10… payoff of the last game c c           , where 

1024

payoff of the last gamec  . Now study the value of c . The game would end on the 11th  tossing with 

probability 0 5  and the payoff would be 112 , so 
11

10
2

2
2c   . But two additional tosses are 

required to finish the game with 0 25  probability, and in this case c  would be 
12

10
2

2
4  and so 

on. So the average of payoffs equals 10 2 12   with 0 5  probability, 10 4 14   with 0 25  

probability and so on.  

Generalize the problem, suppose that we play 2kn   games. Our data are the followings:  

 

The first head occurs on the thk  tossing (k) 1 2 3 … k-1 k 

Number of completed games 12k  22k  32k  … 2 1 

Payoff ( 2k ) 2 4 8 … 12k  2k  

Table 2. St. Petersburg game in general 

After the first tossing, the half of the games, 12k  games complete. After the second tossing 

22k  games complete and so on, after the thk  tossing only 1 game completes. The sum of the 

completed games equals 1 22 2 2 1 2 1k k k…       , so 1 game would continue after the thk  

tossing. But this game would complete after the next ( 1)thk   tossing with 0 5  probability, 

after the ( 2)thk   tossing with 0 25  probability and so on. The average of payoffs equals: 

1 2 0

2

2

2 2 2 4 2 2

2

k

k

k k k

k

… payoff of the last game
k c k c

    
    , where c  equals 2  with 

0 5  probability, 4  with 0 25  probability and so on. So we can demonstrate the averages of 

payoffs with a set of lines, exactly 2k   line with 0 5  probability, 4k   line with 0 25  

probability, 8k   line with 0 125  probability and so on.  

Now simulate the game with MATLAB for example, where 20k  . Our values are on the 

broken (red) line, and we can draw our lines in the first four events. Students can easily see 

that the simulated values are consistent with the calculated results.  
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Figure 1. Simulated and calculated values of the game 

Buffon and other mathematicians thought that Paul has to pay 2logn n  ducats for n  games, so 

2log n  ducats are spent per game. If Paul would like to play the game 1048575  times, he 

would have to pay 20  ducats per game. But as these gameswould take almost 30  years, we 

do not need to study this situation. Therefore, about 10  ducats per game can be an acceptable 

amount.  

Csörgö and Simons existed an extensive literature on asymptotic theory for St. Petersburg 

games [2]. Csörgö explained why 2logn n  will not satisfy the banker, and generally no 

satisfactory solution can be based on laws of large numbers. (There is no asymptotic 

distribution.) He remarked that in n  games 2log n  fee per game is too little, if Paul passes up 

his biggest win, but it is too much if he passes up the biggest two wins. The research is still 

ongoing, many Hungarian mathematicians work in this filed successfully.  

Many examples of St. Petersburg games and their generalizations are studied in the statistics, 

economics, and mathematics literature and in many fields of life. It is well-known in 

economics that Daniel Bernoulli’s work in 1738 was the basis of the formation of the modern 

utility concept that the economists and psychologists and other researchers use even today [1].  

An interesting example of a modified St. Petersburg game is a popular television game show, 

Who Wants to be a Millionaire? It offers players the chance to win up to one million dollars. 

Moreover, we can mention the so-called "martingale strategy", that many gamblers like to 

use. In this game we play against the bank with a 50%  chance to win. If we lose in the first 

game, we double the bet. If we lose in the second game again, we also double the previous 

bet, and so on, until we win. If our first bet equals A dollar and we lose in the first n-1 game 

but we win in the n th game, then our winning amount equals 2nA , but we had to pay out 
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1(1 2 4 2 ) (2 1)n nA A      dollars. So our benefit is A . It seems to be a good strategy, 

but thereare some problems. Usually we have not got infinite money (perhaps we win in 

infinite), and if we have a lot of money then to win A  dollars, does not matter. Last but not 

least, of course the casinos know about this strategy so they limit the amount ofbets. Using the 

modified paradox Székely and Richards gave an interesting study of economic crisis in [14]. 

These and many other interesting examples can engage the interest of weaker students either.  
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Abstract 

The paper focuses on one method to promote mathematical thinking and understanding: 

the use of problem fields. They are open problems that are gaining more and more em-

phasis in all over the world. When using open problems in a proper way, a teacher can 

improve his mathematics teaching in school. The terms ’open problem’ and ’problem 

field’ will be discussed and enlightened with some examples. Furthermore, an example 

of problems fields is presented and dealt with in detail.   

Key words: problem solving, open problems, mathematical thinking  
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Introduction 

In Finland the objectives of mathematics teaching for all school forms contain understanding 

of mathematical structures and development of mathematical thinking, not only the practicing 

of calculation skills (NBE 2004). The same is valid also for other countries, for example 

Germany (KMK 2005) and the States (NCTM 2000). The purpose of school teaching in all 

countries is to develop such citizens that are independent and eigen-initiative as well as are 

thinking critically. Furthermore, pupils should learn to be motivated and able to meet the situ-

ations encountered in their life. 

This purpose is not so easy to implement in the conventional mathematics teaching, where the 

teacher is very eager to take a mathematics book and practice with some calculation tasks. 

Therefore, one should add new obligatory elements into the school instruction: such tasks 

where the teacher will practice especially his
1
 pupils’ problem solving and thinking skills. 

On mathematical understanding 

Mathematical understanding can be characterized as a continuous process that is fixed to a 

certain person, a mathematical content domain and a special environment (cf. Hiebert & Car-

                                                 
1
 If we don’t know the gender of the person in question, we will use the male form. 
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penter 1992). Mathematical understanding answers the question ”Why?” and, in addition, en-

tails, among other factors, the skills required to analyze mathematical statements. In the US-

Standards on Mathematics Teaching given by the NCTM about 15 years ago, understanding is 

one of the important goals of mathematics teaching (cf. NCTM 2000).  

In recent decades there have been numerous research projects on pupils’  mathematical under-

standing. Different concepts of understanding were developed that might be important e.g. to 

curriculum development, evaluation of mathematics teaching or teacher education. In her 

overview study, Mousley (2005) distinguishes between three types of models for understand-

ing mathematics: understanding as structured progress, understanding as forms of knowing, 

and understanding as process.  

In the first category are, for example, models that are based on ideas of Piaget, or Vygotsky’s 

“zones of development”. A well-known model of the second category was developed by 

Skemp who firstly differentiated between instrumental und relational understanding and later 

added logical understanding as a third kind (Skemp, 1987). Whereas Pirie and Kieren (1994) 

presented a model of the third type: understanding as process.  

Another aspect of understanding is presented by Leinonen (2011) who discusses different 

kinds of understanding and their meaning in the learning process of problem solving. Accord-

ing to him understanding has, in this context, four modes: conceptual knowledge, grasping 

meaning, comprehension and accommodation. The function of those modes is to give the 

background and conceptual instruments for thinking, to interpret the information, to synthe-

size the knowledge, to integrate the message into permanent memory, and to reorganize the 

cognitive structure. 

In the reported study we investigate development of pupils’ (and teacher’) mathematical un-

derstanding. Therefore, we will use here the terms of Leinonen when speaking on understand-

ing und trying to understand the term “understanding”. 

Open approach  

Problem solving has a long tradition in school mathematics. Since in the literature there exists 

no generally accepted characterization for problem solving, we will introduce here the defini-

tion we are using, in order to have a common language, when speaking about tasks and prob-

lems:  
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Such a task situation will be named a problem, where an individual needs to combine the (for 

him) known information in a (for him) new way, in order to be able to solve the problem (cf. 

Kantowski 1980). If he knows the procedures needed, the task is for him a routine task (or a 

practice task or a standard task). Often one uses the term non-standard task that means such a 

task that one cannot, especially earlier, usually find in mathematics school books. 

For example, Schröder & Lester (1989) have pointed out that problem solving should not be 

considered only as a teaching content, but also as a teaching method. In their paper, they in-

troduced three different aspects of teaching problem solving (PS): teaching about PS, teach-

ing for PS, teaching via PS. In the following we concentrate on the last aspect, i.e. using prob-

lem solving as a teaching method.    

Open problems  

The most mathematics problems in the school textbook are closed, i.e. the starting and goal 

position are exactly formulated. Whereas a problem is called open, if its starting and/or goal 

position are not exactly given (cf. Pehkonen 1995a). In such problems, pupils have some free 

space for solving the problem, since there are some parameters in the problem that the pupils 

might decide themselves. This means that they can result different but also correct solutions, 

since the result depends on their additional hypothesis during the solution process. Therefore, 

open problems have usually many correct answers. When the teacher uses open problems in 

his mathematics teaching, his pupils have an opportunity to work as creative mathematicians 

(cf. Brown 1997). Thus, in using open problems in school mathematics pupils can experiences 

what mathematics really is.  

Using only conventional mathematics tasks will limit pupils’ understanding of mathematics 

rather easily to a very narrow one, whereas with the help of open problems this view can be 

enlarged. Open problems offer on one hand to pupils more discretion in the solving phase, but 

on the other hand they are compelled to use their knowledge more diverse.  

Example 1: Pupils are given a parallelogram that is cut from a DINA4 paper and a pair of 

scissors. Their task is to find out, whether it is possible to cut the parallelogram into two 

pieces in such a way that one may put from the pieces a rectangular together. The next ques-

tion might be, whether there is another solution to the problem. How many different solutions 

are there altogether?  

When using open problems we can response challenges of the developing mathematics teach-

ing. Such a teaching will lead almost automatically to problem-oriented teaching and will 
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clearly head to increasing of communication. This is a way to add also openness and pupil-

centeredness to teaching.  

In the literature, there are some overviews on the situation of open problem solving. About 

ten years ago Pehkonen (2004) wrote a overview of open problem solving world-wide. And 

some years later Zimmermann (2010) described the development of open problem solving 

within the last 20 years in Germany. Both papers deliver a broad picture on the use of open 

problems.  

Problem posing   

In the Finnish curriculum (NBE 2004), one of the general goals for all subjects is the devel-

opment of pupils’ creativity. If a teacher aims in his mathematics teaching especially to the 

development of creativity, the use of problem solving is not enough. It is true that in problem 

solving there is a creative element always present but not so much freedom, and creativity 

demands freedom. Thus, a natural solution is to give pupils more freedom, e.g. in such a way 

that they can solve problems formulated themselves.  

About 30 years ago, the open approach method was developed in Japan (cf. Nohda 1991) that 

would maximize the freedom in problem solving: open-ended tasks. Here the teacher gives to 

his pupils a problem, but the question is not to solve the problem but the pupils should just 

find as many different solution ways as possible (cf. Shimada 1997). Investigations developed 

in 1970’s in England form another type of open-ended problems (cf. Cockcroft 1982). In an 

investigation, the teacher gives to his pupils some starting problems in a problem situation, 

and then the pupils solve the problems and continue on their own. 

Problem posing and problem generating have been studied more than 20 years in the mathe-

matics education (cf. Brown & Walter 1983). Problem posing means the formulation (or pos-

ing) of a problem from a situation, in such a way that it becomes into a solvable form. But be-

hind every such a problem there is a big variety of potential interesting problems, i.e. the vari-

ations of the original problem (cf. Schupp 2002). One strategy to grip such unknown prob-

lems is to put forward a couple of basic questions on the problem in question: What kind of 

information do we get from the problem? What kind of information do we have on the un-

known (the wanted solution)? What kind of restrictions do we have for the solution? (cf. Mo-

ses & al. 1990). And when reformulating this information we will get a big variety of related 

problems. 
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The following example (Ulam’s spirale) points out how problem posing is functioning. First 

the situation (i.e. the framework) will be given within which pupils may work. Pupils should 

generate themselves an interesting problem in the framework and formulate it, and at the end 

the problem will be solved. If the teacher gives such a freedom for his pupils, the learning at-

mosphere of the class will be improved (cf. Pehkonen 1995b). 

Example 2: The Ulam’s spirale 

The positive integers will be written in a form of a spiral (Fig. 1). Formulate a problem that is 

connected to this number schema, and try to solve it. 

 

Fig. 1. The starting situation in the Ulam’s spirale (e.g. Brown & Walter 1990, 94). 

At first, a solver should find a proper problem and formulate it (problem posing). Some ex-

amples of possible problems could be the following: “Is there some pattern in the diagonal 

number sequence 1, 3, 13, …?” and “What would be the n. term in the diagonal sequence?”  

It is good to notice that from the Ulam’s spirale one can develop very many problems that are 

proper also for mathematics teaching of secondary schools. Then the pupil in question should 

think different methods to solve the problem. Therefore, this represents such a situation where 

professional mathematicians (research mathematicians) are when they try to generate new in-

formation (Brown 1997). Nobody will give them a ready-formulated problem, but they must 

find it themselves and formulate it, and try to solve it.  

Problem fields in teaching  

A typical investigation is an open-ended problem where pupils have the starting situation, and 

they should explore further. Investigations can be divided into structured and non-structured 

ones. The latter ones have been used in England since the 1970’s (cf. Cockcroft 1982): A 

problem situation is given to pupils as well as a couple of starting problems, and then the pu-

pils should work independently further. The structured investigations are called problem fields 

(or problem domains or problem sequences). Here the teacher has a lot of further questions 
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(problems) on the starting situation, and he decides according to the solving activity of the 

teaching group, which way he will take and how far he will continue with the problem field in 

question.  

An example: Calculation Pyramid 

Here we will look at one concrete teaching unit of problem fields. These problem fields are 

planned for lower secondary mathematics teaching (about 13–15 years old pupils) in Finland. 

The problem field in question is published earlier in a German teacher journal (cf. Pehkonen 

1991).  

The objectives for the use of this problem field are two-fold: 1) Pupils practice the calculation 

with integral numbers. 2) Pupils learn to reason by making different connections. For pupils 

the important tool here is to make a guess on a general rule, and to check their guess with cal-

culations. Thus pupils begin to see the reasons why their guess is correct or not. 

Example 3: Calculation Pyramid  

The scheme in Fig. 2 will be called a four-step calculation pyramid that has -2, 3, -7 and 5 as 

its start numbers.  

Add always the numbers in the two boxes below and put the sum into the box above. Which 

number will you get into the uppermost box? 

-2 3 -7 5

-2

 

Fig. 2. A four-step calculation pyramid. 

Question series 1:  

If one changes any of the start numbers (-2, 3, -7, 5), what kind of change has it in the number 

of the uppermost box?      

Try to change only one start number and with only one unit (e.g. -1, 3, -7, 5), and make your 

suggestion before calculation.  
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Can you find a pattern, in order you can tell beforehand what kind of change will happen? 

Check your idea?  

Question series 2:  

In the example above (Fig. 2) the number -9 was found as the uppermost number. 

Investigate, whether it is possible to construct another number pyramid (i.e. with different 

start numbers than -2, 3, -7 and 5) where the uppermost number is -9.     

Can you find still another different number pyramid that also has -9 as its uppermost number?    

How many different number pyramids are there altogether that has -9 as its uppermost num-

ber? What would you guess? How could you reason your hypotheses?  

Question series 3:  

Try to construct a number pyramid that has 10 as its uppermost number.    

What about a number pyramid that has -100 as its uppermost number? Investigate which 

numbers are possible as the uppermost number in a number pyramid. Why?     

My teaching experiences 

This problem field has been probed in several classes in natural settings. It represents such a 

mathematical problem that we have developed for the classroom use in heterogeneous classes 

of the Finnish comprehensive school (e.g. Pehkonen 1997). Within every problem field the 

level of problem difficulty varies from very easy ones that probably the whole class can solve, 

to more complicated problems that, perhaps, only the most talented pupils can solve.  

The problem field is very flexible in the following sense: If we change the negative numbers 

in the starting situation to positive ones, the problem field is proper to use also in the elemen-

tary level. And if we take complex numbers (a + bi), the problem field is good for upper sec-

ondary level to practice addition of complex numbers. 

On the use of problem fields  

Since problem fields are planned to promote in the first place problem solving skills and crea-

tivity, they are not connected to a certain grade level (cf. Pehkonen 1989). The same problem 

field is usually proper for mathematics teaching from elementary level to teacher education. 

The role of easier problems in a problem field is to strengthen pupils’ problem solving persis-

tence, and offer the participating possibility also to low-achievers.  
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The most important aspect in these problem fields is the way they are presented in class: A 

problem field should be given to pupils in small pieces, and the continuation with it depends 

on pupils’ solutions. Instead of answers and results the most important in the process of solv-

ing a problem field is pupils’ independent solving process; therefore, the answers are not giv-

en here. The essential task of this method is to apply and develop pupils’ creativity. How far 

the teacher will work in a class with one problem field depends essentially from pupils’ an-

swers. When pupils do not find more solutions, the teacher can leave the problem field and, 

perhaps, come back later on.  

During the solution process the teacher’s role is, as Schoenfeld (1985) puts it, only to act as a 

discussion moderator and assistant. I.e. the teacher writes everything offered from the class on 

the blackboard (also possible errant ways) without any comments, and at the end all offered 

solution possibilities shall be discussed together. Then the class (pupils together) decide the 

correctness of the solution paths (and errant ways), and will check their credibility. Of course, 

the teacher may use pupils’ ideas for new problems, and thus develop the problem field fur-

ther. 

The use of problem fields is not meant to substitute conventional mathematics teaching, but to 

enrich it. Pupils will learn other part of mathematics than plain calculations. When one uses a 

problem field in the normal school teaching, the probed method is to discuss them in small 

pieces at the end of the teaching unit (e.g. about 10 min). And to give as much as possible of 

the rest of the problems to pupils as a homework. Then all pupils have enough time to think 

about the problems, and therefore, success experiences are more common. The rest of the les-

sons (beginning) can be used e.g. for conventional mathematics teaching.  

What is the meaning of problem fields?  

Conventional school teaching has been accused of that it considers as totally separate the ac-

tion and the context where learning happens. However, psychological investigations have 

shown that (also mathematics) learning is strongly situation-bound (e.g. Brown & al. 1989, 

Collins & al. 1989, Bereiter 1990). Learning psychological research has confirmed the earlier 

hypotheses that learning of facts and processes happens via different mechanisms (Bereiter & 

Scardamalia 1996). Therefore, we do need new elements into the school learning process, for 

instance open problems. 

Conventional teaching is proper for learning facts, but for processes new elements will be 

needed, such elements that emphasis pupils’ spontaneous studying. The use of open problems 
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offers here an opportunity, since they enable the use of real problems and learning in natural 

settings. Solving open problems sets pupils into real problem solving environment, and thus it 

can combine phenomena of real world and classroom.   

The use of problem fields brings openness into the teaching. Furthermore, the use of problem 

fields promotes pupils’ thinking skills and creativity which both are important in pupils’ fu-

ture life. The usual understanding of mathematics as a rigid and abstract discipline can be re-

placed by a wider view of mathematics: mathematics can also be enjoyable. As a result, there 

are more pupils who enjoy doing mathematical tasks and will have experiences of success. 

When pupils are solving problems during mathematics lessons, especially open problems, ac-

cording to my experiences also the teacher will experience mathematics lessons more interest-

ing. He must think himself on the problems, and not only mechanically do some routine pro-

cedure. He should learn to accept the fact that he does not know everything, and not to be 

afraid to show it. Thus his pupils will consider him more human. Today one should develop 

richer problem fields and probe them in mathematics teaching. Additionally, it is important to 

convoy the information to other teachers e.g. in teachers’ journals. 

If one will develop the use of open problems in teaching of school mathematics, the teacher’s 

own conceptions on good mathematics teaching are very strongly in a leading position: they 

conduct the implementation of instruction. If the conception of open teaching is not coherent 

with the teacher’s understanding of teaching, the new teaching will not be successful, alt-

hough the teacher has been trained to use open problems. Therefore, the teacher’s own beliefs 

and conceptions on mathematics teaching are in a key position (cf. Shaw & al. 1991).   

End notes 

The Finnish curriculum demands that in teaching of mathematics one should develop, besides 

calculation skills, also skills in problem solving and mathematical thinking, from the very be-

ginning (NBE 2004). This purpose does not seem to be implemented within the conventional 

teaching where the teacher too eagerly takes the textbook and uses the teaching method of 

working with calculation tasks. Therefore, one should bring new elements into the instruction: 

such tasks with which the teacher can develop his pupils problem solving and thinking skills.  

In order teachers can implement such teaching, they should have interests in developing their 

teaching as well as they should be committed to implement new ideas in their classrooms (cf. 

Shaw & al. 1991). 
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Abstract 

Through solving Diophantine equations, this paper aims to illustrate how we can apply 

successfully the Gaussian integers in high school study group sessions or even in a math 

contest. The complex numbers z a bi  , where a  and b  are integers, are called Gaus-

sian integers. Actually, the complex numbers do not occur in high school curriculum, 

therefore the Gaussian integers are not mentioned either. However, if we disregard the 

usual precise discussion of the theory, and refer to the most difficult theorems without 

proof, then we can solve interesting and beautiful number theory problems without 

requiring extensive background knowledge. We start the paper with some “usual” 

elementary solutions of contest problems, showing different methods and also some 

generalizations. These can help the deeper understanding, and motivate the most 

talented students. We give also a solution with Gaussian integers to each problem. In 

the second part of the paper we deal with Diophantine equations, where elementary 

solution is often very difficult, and it is much more efficient to work with the Gaussian 

integers. As an illustration, also the author‘s own elementary solution is presented for 

the Mordell equation 
2 31x y  .  

Key words and phrases: Diophantine equations; Gaussian integer; problem solving situation  

ZDM classification: D50, F50, F60  

 

The students learn about Diophantine equations in the 9th  grade first. The theme usually 

arises in classes with a stronger mathematical curriculum at the end of an algebraic section. 

The time given for this topic comprises usually 3 4  lessons, which proves to be sufficient in 

most cases for the students to get acquainted with the basic tools and methods. The students 

can experience how they can use their factoring and other techniques in these new problem-

solving situations. The teacher can show some examples for Diophantine equations  

– especially linear ones –, where we rely on the previously acquired knowledge in number 

theory. Another typical situation is when we want to prove, that an equation has no integer 

solutions. In these cases, generally, we have to consider the possible remainders for some 

modulus of certain types of terms (square numbers, cubes, etc.). Study group sessions help to 

develop the mathematical problem-solving ability of talented and motivated students. The 
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material is integrally connected to the curriculum of the 9th  grade and deepens thoroughly 

the skills and understanding of the students. Fortunately, teachers usually have sufficient 

freedom to provide some time to deal in depth with Diophantine equations according to their 

own discretion. There are many excellent problem collections, study group session booklets 

([2], [3], [4]) featuring also Diophantine equations. The outward goal of the study group 

sessions is to promote the successful preparation to math contests. Since in these contests we 

usually meet Diophantine equations, it is useful to update and extend the relevant knowledge 

later (in 11th  and 12th  grades). It is our personal observation, that the majority of the 

students participating in the study group sessions like solving equations, in particular if it is a 

challenge or it has several different approaches. In this paper the author presents a possible 

extension of the topic which will be “tested” by his own students in a study group session in 

the near future. The discussion requires the basic concepts of complex numbers leading us to 

the Gaussian integers. From the theory of the Gaussian integers we shall use without proof the 

unique prime factorization theorem, the units and the list of Gaussian primes (see e.g. [1]). 

Armed with this new knowledge we will be able to solve interesting problems which are often 

very difficult to be handled with elementary tools. We are confident that, using this 

experience, the students will be more effective in the various national contests later, and also 

better prepared for the mathematical studies in higher educational institutions.  

In the first part of the paper we discuss several solutions of two contest problems. The 

Diophantine equation 
2 2 2( 7)xy x y    will be solved by five different methods the first 

four of which are elementary, and the last one uses Gaussian integers. For the second problem 

we present three different solutions, one of which uses Gaussian integers. As an interesting 

application we solve the Diophantine equation 
2 34p a   related to the problem. This leads 

us to the second part of the paper where we examine the so-called Mordell equation 

2 3x k y   for some values of k . For 7k   we present an elementary solution, whereas for 

1k   we give two different solutions, from which the first one is the author’s own argument, 

illustrating that the elementary approach seems to be rather complicated, while the second one 

is a simpler proof using Gaussian integers. As a byproduct of the elementary solution, we 

determine also the integer solutions of the equation 
4 2 2 46 3 1n m n m    with infinite 

descent. Finally we solve the generalized Mordell equation 
2 1 nx y  , 3n , using Gaussian 

integers.  
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Problem 1. Solve the Diophantine equation 
2 2 2( 7)xy x y    among the nonnegative inte-

gers. (Indian National Mathematical Olympiad 1990)  

Solution 1 

Expanding the expression on the LHS, and adding 2xy  to both sides, we get  

 2 2( 6) 13 ( )xy x y      

We can rewrite this as  

   6 ( ) 6 13xy x y xy x y          

Since the factors are integers and 6 6xy x y xy x y       , therefore only the following 

two cases are possible  

 
6 1

6 13

xy x y

xy x y

    

    
 

 

 
6 13

6 1

xy x y

xy x y

    

    
 

From the first system of equations we get the solutions 3x  , 4y  , and 4x  , 3y  . From 

the second system we obtain 0x  , 7y  , and 7x  , 0y  .  

Solution 2  

If 0x  , then 7y  , and if 0y  , then 7x  . If for example 1x  , then 
2 2( 7) 1y y    has 

no integer solutions in y . Hence we may assume 2x y  . If 7xy x y   , then 

2 2 2 2 2 2( 7) ( )x y xy x y x y        yields a contradiction. Therefore, only 7xy x y   , 

i.e. ( 1)( 1) 8x y    is possible, which can be satisfied only by finitely many integers 

2x y  . For symmetry reasons it is enough to check 2 8x  , and we can get an integer for 

y  only for 3x   and 4x  . The relevant values for y  are 4y   and 3y  .  

Solution 3  

We rewrite the equation as  

 
2 2 2( 1) 14 49 0y x yx y       

If we consider this as a quadratic equation in x , then we can get integer solutions only if the 

discriminant is a perfect square, i.e.  

(1) 
4 2 24 4 196y y d     
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for some integer 0d  , and we get 2

14

2 2

y d

y
x 


  from the quadratic formula. We can transform 

(1) into  

 2 2 2 2 2(2 1) 195 ( 2 1)( 2 1) 195y d d y d y          

If 0y  , then 7x   from the original equation. If 0y  , then the second factor of the LHS of 

the last form of our equation is greater than the first one. Therefore, only the following cases 

are possible:  

 
2 2 2 2

2 2 2 2

2 1 1 2 1 3 2 1 5 2 1 13

2 1 195 2 1 65 2 1 39 2 1 15

d y d y d y d y

d y d y d y d y

              
   

                  
 

We obtain 98 34 22d    , and 14, resp., and these will yield the same nonnegative integer 

solutions which we found by the previous methods.  

Solution 4  

If 0x  , then 7y  , and if 0y  , then 7x  . Further, suppose that 0x y  . From 

2 2 2( 7)xy x y    we have gcd( 7) 1x y xy     or gcd( 7) 7x y xy    . In the first case the 

well-known formulas for the Pythagorean triples give  

 

2 2

2 2

2

7

x u v

y uv

xy u v

 



  

 

for some integers u v  of opposite parity with gcd( ) 1u v   and 0u v  . From here 

2 2 2 22 ( ) 7u v uv u v    . Since 1v u  , therefore  

 
2 2( 1) 2 ( )( ) 7 2 ( 1) 7u u uv u v u v u u           

from which we get 2 u . This is possible only for 2u  , 1v  , and we will get the solution 

3x  , 4y  . For symmetry reasons, also interchanging the variables provides a solution.  

If gcd( 7) 7x y xy    , then 7x x , 7y y , 7 7(7 1)xy x y    , and we have to solve the 

equation 
2 22 (7 1)x yyx     , where 7 1x y x y       are already relatively primes. Thus, there 

are integers r s  of different parity for which 0r s  , gcd( ) 1r s  , and  

 

2 2

2 2

2

1

x r s

y rs

x y r s

  



    

 

This leads to the equation 
2 2 2 22 ( ) 1rs r s r s    . A modulo 4 check shows that this has no 

integer solutions.  
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Solution 5  

From Solution 4, we use that gcd( 7) 1x y xy    , or gcd( 7) 7x y xy    .  

If gcd( 7) 1x y xy    , the variables x  and y  have opposite parities, since otherwise we get a 

contradiction modulo 4. Assume that x  is odd and y  is even. The RHS of the equation can 

be factored among the Gaussian integers:  

 
2( 7) ( )( )xy x yi x yi      

We show that gcd( ) 1x yi x yi    . If x yi    and x yi   , then 2x   and 2yi  , hence 

gcd(2 2 ) 2x yi    . Since 
22 ( )(1 )i i    and 1 i  is a Gaussian prime, therefore   is a unit 

or is divisible by 1 i . However, this latter is not possible, since 
( )

1 2

x yi x y y x i

i

    


  is not a 

Gaussian integer. By the unique prime factorization theorem (UFT) for the Gaussian integers 

we have 
2 2 2( ) ( 2 )x yi u vi u v uvi       , where u  and v  are integers and   is a unit. 

For 1  , we have 2 2x u v   and 2y uv , by comparing the real and imaginary parts. Let 

us note, that if   is another unit, the solutions are similar as above. The handling of the 

problem can be completed with the formulas for x  and y  similarly as in Solution 4 . Finally, 

the case gcd( 7) 7x y xy     can be treated the same way as described above.  

Remark 1. In Solution 1 we used a standard method for Diophantine equations. We formed a 

product on the LHS side of the equation so it was enough to check the divisors of the integer 

on the RHS, and solve the appropriate systems of equations. The students were familiar with 

some similar examples, thus we can expect, that most of the solutions given by the students 

will follow this line. In Solution 2 we considered the order of magnitude of the two sides: the 

LHS was greater than the RHS, apart from finitely many integer values of the variables. Here 

the students can make some nice observations, since this method might already have been in-

troduced in the study group sessions. A typical example is to show that an expression cannot 

be a square by proving that it falls between two consecutive squares. In Solution 3  we con-

sidered one variable as a parameter and solved the quadratic equation for the other variable. 

This type of application is less familiar to the students, even though they already met with 

parametric equations in their earlier studies. For Solution 4  one has to know the characteriza-

tion of the Pythagorean triples, which is discussed only in classes with a higher number of 

math lessons. And we cannot expect Solution 5  even from them, since it uses Gaussian inte-

gers, which is currently not part of any high school curriculum. However, students learning 

math along a stronger curriculum often get familiar with complex numbers in the study group 
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sessions, and develop a routine for working with these numbers. If the group consists of moti-

vated, interested and outstandingly talented students, then we can talk to them about Gaussian 

integers, and use certain theorems, usually without rigorous proof, of course. Finally, we note 

that in the manner seen in Solution 5  we can get the formula for the Pythagorean triples di-

rectly.  

Remark 2. If we are looking for all integer solutions, not only for the nonnegative ones, then 

we can argue as follows. If ( )x y  is a positive solution, then obviously ( )x y   and ( )y x   

are integer solutions, as well. The solutions where x  and y  have opposite signs can be  

derived from the positive solutions of 
2 2 2( 7)xy x y   , and this equation can be treated 

similarly as our original one. Another generalization is the Diophantine equation 

2 2 2( )xy c x y   , where c  is a fixed integer. Our first method shows, that this equation can 

have only finitely many solutions, since it is equivalent to  
2 22 1 ( )( 1) c x yxy c      .  

Problem 2. Let 3 p q   be primes where both 1p  and 1q  are divisible by 4 . Show, 

that 
2 2q p  cannot be a square (Dániel Arany Mathematical Contest 1976)  

Solution 1  

Proof by contradiction. Assume that for some integer a  we have 
2 2 2q p a  , i.e.  

2( )( )q p q p a   . If gcd( )q p q p d    , then adding and subtracting relations d q p   

and d q p  , we obtain 2d p  and 2d q . This implies gcd(2 2 ) 2d p q   , and since q p  

and q p  are even, we have gcd( ) 2q p q p    . Dividing the equation by 4, we obtain  

 

2

2 2 2

q p q p a   
   

 
 

The factors on the LHS are positive and relatively prime, hence each factor must be a square 

itself, i.e. 2

2

q p x   and 2

2

q p y   for some integers x  and y . Adding these we get 
2 2q x y  , 

which is a contradiction, since a number of form 4 1k   cannot be the sum of two squares. 

(Actually, we used only condition 4 1q  , and this holds also for the next two solutions.)  

Solution 2  

Again, assume 
2 2 2q p a  , or 

2 2 2a p q  . Obviously gcd( ) 1a p q   , therefore a p q   
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form a primitive Pythagorean triple. Thus for some integers u v , gcd( ) 1u v  , 0u v   and 

2 u v   

 

2 2

2 2

2

p u v

a uv

q u v

 



  

 

The last equation yields a contradiction, because a number of form 4 1k   cannot be the sum 

of two squares.  

Remark 3. The argument in Solution 1 already shows the way, how we can prove the formu-

las for the Pythagorean triples. It may well prepare the proof and the better understanding of 

the theorem about these triples.  

Solution 3 

This proof uses Gaussian integers. Assuming again 
2 2 2q a p  , the RHS can be factored 

among the Gaussian integers: 
2 ( )( )q a pi a pi   . Since q  is a prime number of form 

4 1k  , it is prime also among the Gaussian integers. Hence it can divide the RHS only if it 

divides (at least) one of the factors. If e.g. q a pi  , then 
pa

q q
i  is a Gaussian integer. 

However, this contradicts q p .  

In the following, we examine an interesting variant of the problem with the help of Gaussian 

integers. Instead of the difference of two squares of different primes, let us consider their sum. 

It is easy to see, that the sum cannot be a square, therefore let us investigate, when the sum 

equals a cube.  

Problem 3. If 0 p q   are primes and a  is a positive integer, then the only solution of 
2 2 3p q a   is 2p  , 11q  , 5a  .  

Solution  

The usual modulo 4 check implies that p  and q  must have opposite parities, hence 2p   

and q  is odd. Factoring the LHS of 
2 34q a   among the Gaussian integers we obtain  

(2) 
3( 2 )( 2 )q i q i a      

We show that gcd( 2 2 )q i q i     , where   is a unit. Here  

4( 2 ) ( 2 ) 4 ( ) (1 )q i q i i i i          , where 1 i  is a Gaussian prime and 
2 2 2

1 2 2
( )q i q q

i
i  


   
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shows, that 1 i  is not a divisor of 2q i , hence   is a unit, indeed.  

Using the UFT and the fact that every unit is the third power of some unit, the factors on the 

LHS of (2) must be cubes themselves. Therefore 
32 ( )q i a bi    for some integers a  and b . 

Comparing the real and the imaginary parts, we get  

 
3 2

2 3

3

2 3

q a ab

a b b

 

  
 

The second equality implies 2b  , and we will obtain a solution only for 2b   , 1a   , 

11q  .  

Remark 4. The equation 
2 34q a   just studied is a special case of the equation 

2 3x k y  , 

where k Z . These are commonly called Mordell equations, since Mordell proved in 1922, 

that for 0k   the equation can have only finitely many solutions in integers, in fact no solu-

tions at all in most cases. First we shall give an elementary solution for 7k    

(Problem 4). Then we turn to 1k  , where we present two proofs (Problem 5). The first one is 

an elementary but rather complicated argument of the author, involving the elementary 

solution of another interesting Diophantine equation (Problem 6). The second one, using 

Gaussian integers, is much simpler. Finally, the generalization of the case 1k   for higher 

powers instead of cubes will be treated using Gaussian integers (Problem 7).  

Problem 4. The Diophantine equation 
2 37x y   has no integer solution.  

Solution  

A modulo 4 check shows that y  must be odd, moreover of form 4 1k  , and also 1y   . 

Now 
2 3 21 8 ( 2)( 2 4)x y y y y       , and  2 3 mod4y   imply that the RHS has a 

prime divisor of form 4 3k  . But using Fermat’s little theorem it can be proved, that 
2 1x   

cannot have such a prime divisor, a contradiction.  

Problem 5. The only solution for the Diophantine equation 
2 31x y   is 0x  , 1y  .  

Solution 1 

We have to show that no solution exists where 0x y  . Write the equation as  

 
2 2( 1)( 1)x y y y      

As 
2 21 ( 1) 3( 1) 3y y y y        indicates, 

2gcd( 1 1) 1y y y      or 3 .  
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If 
2gcd( 1 1) 1y y y     , then  

 
2

2 2

1

1

y a

y y b

 

   
 

for some integers a  and b , but 
2 2 21 ( 1)y y y y      shows that 

2 1y y   cannot be a 

square. If 
2gcd( 1 1) 3y y y     , then  

 

2 21 1

3 3 3

x y y y   
   

 
 

The factors on the RHS are relatively prime, hence for some positive integers u v  with 

gcd( ) 1u v   we have  

 

2

2
2

1

3

1

3

y
u

y y
v




 
 

 

After substitution and rearrangement we get 4 2 23 3 1u u v   . A modulo 4 check shows that 

u  must be even. Substituting 2u t , and forming complete squares, we arrive at  

      
2 222 2 23 8 1 1 4 2 3 8 1 1t v v t         

In the decomposition 
2 23(8 1) (2 1)(2 1)t v v     the factors on the RHS are relatively prime, 

therefore two cases can occur.  

Case 1. With suitable odd and relatively prime integers 0   , we obtain  

 
2

2

2 1 3

2 1

v

v





 

  
 

Then 
2 23 2   , which has no integer solutions, since the LHS is 0 or 1 modulo 3.  

Case 2 . Now  

 
2

2

2 1

2 1 3

v

v





 

 
 

imply 
2 23 2    and 

28 1t   . Here   and   are both odd of form 4 1l  , or both of 

them are of form 4 1l  , because their product is of form 4 1s . The last two equations imply  

 
2( )( 3 ) 16t        

An easy calculation shows, that the greatest common divisor of the factors on the LHS divides 

4, hence according to our comment made for   , the greatest common divisor will be 
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exactly 4. Thus 3 2

4 4
t       implies that for suitable relatively prime m n  we have  

 

2

2

4

3

4

m

n

 

 







 

and mn t . Solving this system of equations we get  

 
2 2 2 23m n n m            

Substituting this into equation 
2 23 2   , we obtain 4 2 2 46 3 1n m n m   . Hence we are 

done, if we show that this equation has no solution in positive integers.  

Problem 6. The only solution of 4 2 2 46 3 1n m n m    in non-negative integers is 1n  , 

0m .  

Solution  

We consider the equation as a quadratic equation in variable 2n . To obtain an integer 

solution, the discriminant must be a perfect square: 4 4 2

136 4(3 1)m m z    for some integer 

1 0z  . Dividing by 4, we obtain 4 212 1m z  , where 1 2z z . This can be rewritten as  

 4 1 1
3

2 2

z z
m

 
    

The factors on the RHS are relatively prime, therefore two cases are possible: either 41
2

3z A   

and 41
2

z B  , or 41
2

z A   and 41
2

3z B  , for some relatively prime integers A  and B . These 

imply 4 43 1B A   and 4 43 1B A  , resp. The second one is impossible modulo 3, hence we 

have 4 43 1B A  , where 1B , 0A  is a trivial solution. We show by infinite descent that 

no solution exists with 2B , 2A . Assume the converse, and start with a solution, where 

A  has a minimal value, then construct a solution with 0 t A  , which yields a contradiction.  

A modulo 8 check shows that B  is odd and A  is even. Substituting 2A C , we get  

 
2 2

4 1 1
12

2 2

B B
C

   
   
  

 

The second factor is odd, and is not divisible by 3 , thus  

 
2 2

4 1 1

24 2

B B
C

   
   
  

 

Then, for some integers r  and s  we have 2 41 24B r   and 
2 41 2B s  , hence 

4 412 1s r  . 

Similarly to the previous argument, we obtain  
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2 2

4 1 1

6 2

s s
r

   
   
  

 

From equations 2 41 6s t   and 2 41 2s w   we get 4 43 1w t  . Since 2B , 1s   and 

0t  , also 2A C , C rs  and r tw , thus 2A wst t  . Hence we obtained a solution of 

4 43 1x y   where x w  and y t A   which contradicts the minimality of A .  

Solution 2 of Problem 5.  

Clearly gcd( ) 1x y  , and by a modulo 4 check we see that x  is even and y  is odd. Factoring 

the LHS among the Gaussian integers we obtain  

 
3( )( )x i x i y     

We will prove that gcd( )x i x i     , where   is a unit. If x i    and x i   , then 2i  . 

Since 
22 (1 )i i   and 1 i  is a Gaussian prime, it is enough to show that 1 i x i  :  

 
( )(1 ) 1 1

1 2 2 2

x i x i i x x
i

i

    
    


 

and since x  is even, the quotient is not a Gaussian integer, i.e. gcd( )x i x i    is a unit 

indeed. Since every unit is the cube of a unit, and the UFT is valid, therefore 
3( )x i u vi    

for some integers u  and v , i.e.  

(3) 
3 2 2 33 (3 )x i u uv u v v i        

Comparing the imaginary parts, we get 2 33 1u v v  . Since v  divides the LHS, only 1v  , or 

1v    are possible. We get a solution for u  only with 1v   , 0u  . Substituting this into 

(3), we obtain 0x  , 1y  .  

Now, let us solve the following generalization of Problem 5 by using Gaussian integers.  

Problem 7. For 2n  the Diophantine equation 
2 1 nx y   has only trivial solutions, 

i.e. 0x  , 1y  , and for n even also 0x  , 1y   .  

Solution  

If 2n k , then 
2 21 ( )kx y   means that two consecutive integers are both squares, hence 

0x  , 1ky  , from which we get 0x   and 1y   , indeed.  

For n  odd, it is enough to prove the statement for the prime values of n , since a non-trivial 

solution for n  would mean also a non-trivial solution for p  using 
2 1

n
p

p

x y
 
 
 
 

   for some 
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prime factor p  of n . Thus consider 
2 1 px y  , where 3p   is a prime. Clearly x  is even 

and y  is odd. Assume that we have a solution where 2x  and 3y  . Let us factor the LHS 

among the Gaussian integers. For the sake of simpler calculations we will use the 

decomposition (1 )(1 )xi xi   instead of the usual ( )( )x i x i   factorization:  

 (1 )(1 ) pxi xi y     

As in the solution of Problem 5, we obtain that gcd(1 1 )xi xi    is a unit. Again, using the 

UFT and the fact that every unit is the pth  power of a unit ( 3p   prime), therefore 

1 ( )pxi a bi    and 1 ( )pxi a bi    for some integers a  and b .  

Expanding 1 ( )pxi a bi    by the binomial theorem, and comparing the real parts we get  

 2 2 4 4 11
2 4 1

p p p p
p p p

a a b a b … ab
p

       
          

     
 

Since the RHS is divisible by a , therefore 1a  , i.e. 1a   . At the same time b  is even, since 

otherwise each of the 12p  terms 2 2p j ja b  would be odd thus giving an even sum instead of 1. 

Since b  is even, a modulo 4  check gives  1 mod4pa  , hence only 1a   is possible. 

Substituting 1a  , and dividing by ( 2 0b  ) we obtain  

 2 4 3

2 4 6 1

p
p p p p

b b … b
p

       
           

       
 

We will show that the LHS is divisible by a smaller power of 2 , than the RHS. Write 

1 2lp s  , where 1s   is odd. Then 
2

p
 
 
 
 

 is divisible exactly by the 1l st  power of 2.  

A general term appearing on the RHS is  

 2 2( 1) ( 2 1)

(2 )

mp p p m
b

m

  
 


 

where 1

2
2 pm   . In the numerator every second factor is divisible by 2, hence the exponent 

of 2 is at least ( 1)l m  , the exponent of 2 is at least 2 2m  in 
2 2mb 

. On the other hand, it is 

known, that every prime factor of n can appear at most with exponent 1n , hence the 

exponent of 2 in the denominator is at most 2 1m . Thus the exponent of 2 in the general 

term is at least 1 2 2 (2 1) 2l m m m l m         . Since 2m , thus 2 1l m l    , and 

we have completed the proof.  
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Abstract 

The concept of “heuristics” or “heuristic strategies” is central to (mathematical) 

problem solving and related research; however, there is no generally accepted 

definition of this term. Trying to clarify the concept might help avoiding misun-

derstands and difficulties in dealing with studies that use different terms meaning 

the same concepts or that use the same terms meaning different concepts.  

I’m going to discuss differing definitions of the term “heuristics” on a theoretical 

basis as well as on the basis of judgments by specialists in mathematics education. 

The goals of this research are a clarification of the term and suggestions for the 

use of it in future research.  

Key words: Heuristics, Problem Solving, Theoretical Foundation 

ZDM classification: D 20, D50  

Introduction 

Heuristics or heuristic strategies are central to problem solving and related research. “Once 

nearly forgotten [before Pólya revived it], heuristics have now become nearly synonymous 

with mathematical problem solving.” (Schoenfeld 1985, p. 23) But what are heuristics? Asked 

about heuristic techniques, examples like “means-ends-analysis” or “drawing a figure” come 

to mind quickly. But what does the term mean in general? And how can it be differentiated 

from routine techniques and algorithms on the one hand and from self- and process-regulatory 

activities (as parts of metacognition) on the other hand? 

Despite its importance for problem solving (research), there is not a generally accepted defini-

tion of the term “heuristic”. McClintock (1979, p. 174) calls heuristics “the ancient, ill-

defined discipline” and other authors approve that there is no agreed upon characterization 

(e.g., Romanycia & Pelletier 1985). 

In most studies the term “heuristic” is not properly defined but only examples of heuristic 

strategies and techniques are given (like “working backwards” or “examining special cases”), 

if at all. This is even worse if the term “heuristic” is used in differing meanings. 

One could argue that so far research has done fine without a proper definition, so why bother? 

We should bother, because of several good reasons for proper definitions: Firstly, it is of aca-

mailto:benjamin.rott@ph-freiburg.de
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demic interest to clarify often used terms, especially if they are used as widely as “heuristics”. 

Secondly, trying to specify this term might help avoiding misunderstandings and difficulties 

when dealing with studies regarding it. There are studies that use different terms meaning the 

same concepts and there are studies that use the same terms meaning different concepts. And 

thirdly, using straight definitions might help judging studies and the extent to which their out-

come is due to heuristics or to other activities (cf. Romanycia & Pelletier 1985, p. 47). 

Theoretical Background 

The word “heuristic” origins in the ancient Greek heurisko (ǫυρισκo: “I find out”, “I discov-

er”; also note the famous exclamation “Eureka!” by Archimedes), but a direct translation does 

not really help to define its meaning. A translation is especially insufficient when characteriz-

ing the usages of the term in the differing contexts of mathematics, mathematics education, 

psychology, or artificial intelligence (AI). To illustrate the differences between usages of the 

term “heuristics” in various scientific fields, I point out three different concepts: 

(1) Heuristics as rules of thumb, as hints, and as recommendations to problem solvers (that 

are stuck in their process). Examples are: to better understand the problem, draw a fig-

ure or add auxiliary elements or do you know a similar problem that may help you? 

Representatives of this concept are: Pólya (1945); Schoenfeld (1985). 

(2) Heuristics as (computer-based) devices (programs, rules, etc.) that operate in a formal 

problem space; especially for situations in which no algorithm is known or applicable. 

An example is: use the Ant Colony Optimization Algorithm (cf. Dorigo & Stützle 2004) 

for your Traveling Salesman Problem, because the brute force approach would take 

years to perform. Representatives for this concept are: Feigenbaum & Feldman (1963); 

Romanycia & Pelletier (1985); Michalewicz & Fogel (2004). 

(3) Heuristics as subconscious, automatic answers to difficult questions; shortcuts that can 

produce efficient decisions (as opposed to conscious, slow, effortful strategic proce-

dures). An example is: instead of answering the question “How happy are you with your 

life these days?” our subconsciousness comes up with an answer to “What is my mood 

right now?” Representatives are: Kahneman (2012); Gigerenzer (1991). 

Concept (3) originates in Cognitive Psychology and differs fundamentally from the concepts 

(1) and (2). In mathematics education, concept (3) is not (widely) used; thus, in this article I 

will focus on the other two concepts – but one should keep (3) in mind. 

Heuristics are an important aspect of solving tasks and problems; therefore, they are closely 

related to other aspects of task and problem solving like “algorithms” and “metacognition”.  
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Metacognition “refers to one’s knowledge concerning one’s own cognitive processes and 

products or anything related to them […] [it] refers, among other things, to the active moni-

toring and consequent regulation and orchestration of these processes in relation to the cogni-

tive objects or data on which they bear […].“ (Flavell 1976, p. 232)  

An algorithm “is a finite sequence of executable instructions which allows one to find a defi-

nite result for a given class of problems.” (Brousseau 1997, p. 129 f.) 

There have been a few approaches at characterizing heuristics, most notably by McClintock 

(1979) and Romanycia and Pelletier (1985) and to some parts by Koichu et al. (2007). These 

researchers’ considerations influenced the “deductive approach” of my analysis (see the 

methodology part for details) 

My research intention is to help clarify the (ill-defined) term “heuristics” and to provide a 

better understanding of it. My approach to do so consists of the following steps: (1.a) Looking 

up definitions, descriptions, and characterizations of the terms “heuristics”, “heuristic strate-

gies”, and “problem solving strategies”. (1.b) Analyzing the selected characterizations, identi-

fying commonalities and differences. (2.a) Asking experts in the research on mathematical 

problem solving for their opinion on selected characterizations. (2.b) Applying selected char-

acterizations to real and fictional situations. 

In this article, due to space reasons, I can only show a part of all the characterizations I looked 

up (1.a) and of the according analyses (1.b); more precisely, I chose nine characterizations for 

further discussion (see Table 1; reasons for this selection are presented in the methodology 

part of this paper). Furthermore, I focus on the opinions of experts (2.a), leaving out the anal-

yses of examples (2.b) for future research. 

Methodology 

Looking up characterizations. For my Ph.D. thesis (Rott 2013), I obtained a broad overview 

of the problem solving literature from mathematics education and psychology in general and 

of heuristics related literature in particular. For this article, I additionally looked up review ar-

ticles on the topic of heuristics and scanned their reference sections to identify other potential-

ly relevant articles. 

I then carefully searched all the books and articles for definitions or characterizations of the 

terms “heuristics”, “heuristic strategies”, or “problem solving strategies” – which most of 

them did not provide. This search resulted in a list of more than 20 characterizations, nine of 

which are presented in Table 1 (the reasons for this selection lie in the fact that certain aspects 

of these characterizations should be represented in this sample; details are discussed below). 
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To some extent, the data accumulation took place during analyzing / coding (see the next par-

agraph for details of the coding process). Whenever I had found a new category I could look 

for additional characterizations that contributed to it. Therefore, the process of data gathering 

could be interpreted as a “theoretical sampling” up to “saturation” sensu Grounded Theory 

(cf. Glaser 2004, paragraph 3.7). 

 

Table 1: Characterizations (C1 – C9) chosen for the questionnaire and the discussion in this article 

# Author(s) Characterization 

C1 Kilpatrick 

(1967, p. 19) 

“A precise definition of heuristic in information-processing terms will probably include 

some procedures that would be better classed as algorithms and will almost necessarily 

exclude some procedures that aid in problem solving. Let us forego such precision, 

therefore, and define a heuristic as any device, technique, rule of thumb, etc. that im-

proves problem-solving performance. We consider heuristics to be typically provisional, 

without guarantee of effectiveness, but we do not attempt to contrast them with algo-

rithms. If algorithms are heuristics, they are the least interesting sort for our purposes.” 

C2 Koichu, 

Berman, & 

Moore (2007, 

p. 101) 

“We refer to the concept of heuristics as a systematic approach to representation, analy-

sis and transformation of scholastic mathematical problems that actual (or potential) 

solvers of those problems use (or can use) in planning and monitoring their solutions. 

Some heuristics are narrow and domain-specific [...], whereas others are universal and 

cut across many problem-solving domains [...]. [...] Heuristics at large can be seen as a 

cognitive tool used to approach problems, effectiveness of which is never known in ad-

vance.” 

C3 Bruder (2000, 

p. 72 f.) 

[translated by 

BR] 

“Disciplinary as well as interdisciplinary methods and techniques for solving problems 

by mathematical means are called heuristic education. […] 

Heuristic methods and techniques differ in multiple ways from the usual mathematical 

terms, theorems and procedures. Most striking characteristic: By using them there is no 

guarantee for a solution. […] 

Heuristic education can be viewed as a way to partly compensate a lack of mental flexi-

bility via a higher awareness of goals and methods.” 

C4 Tietze, Klika 

& Wolpers 

(2000, p. 98) 

[translated by 

BR] 

“Heuristic rules, principles and aids – in short heuristics – shall support the student (a) to 

understand the problem via analyzing it properly and transforming it into a more acces-

sible representation and (b) to plan the process of solution consciously, not to conduct a 

goalless trial-and-error procedure. […]  

It is useful to divide heuristics roughly into two groups: those which relate to the whole 

process of problem solving, for example general planning (global heuristics), and those 

which are local in their nature.” 

C5 Heinze (2007, 

p. 6) [translat-

ed by BR] 

“The goal of a problem solver is […] to find a sequence of operators that transform a 

given initial state into a desired final state. The operators that are activated within the 

problem solver and the thereby accessible intermediate states are called search space. 

This search space can be narrowed by heuristics.” 

C6 Dörner (1979, 

p. 38) 

[translated by 

BR] 

“We call the very structure that organizes and controls such a [problem solving] process 

a heuristic, a procedure to find a solution. The most primitive form of a heuristic is a 

program for an unsystematic trial-and-error procedure. Therefore, heuristics are in a 

sense programs for cognitive operations with which problems of a certain type may po-

tentially be solved. The application of a heuristic does not guarantee the solution, other-

wise it would be no problem.” 

C7 Pólya (1945, 

p. 112, p. 129 

f.) 

“The aim of heuristic is to study the methods and rules of discovery and invention. […] 

Modern heuristic endeavors to understand the process of solving problems, especially 

the mental operations typically useful in this process.” 

C8 Schoenfeld 

(1985, p. 23) 

“Heuristic strategies are rules of thumb for successful problem solving, general sugges-

tions that help an individual to understand a problem better or to make progress toward 

its solution.” 

C9 Winter (1989, 

p. 35) [trans-

lated by BR] 

“[M]athematical heuristic is the information of gaining, finding, discovering, develop-

ing new knowledge and of solving problems methodically (Greek: heuriskein = finding, 

discovering).” 



180 

 

Analysis of the characterizations. I analyzed the selected passages using the Qualitative 

Content Analysis by Mayring (2000). Coding the characterizations, I started with categories 

from the literature (deductive approach) and added categories out of the material (inductive 

approach). The finalized system of categories will be described in the following paragraph.  

I have to admit that so far I was the only one to rate these characterizations. Thus, I cannot 

give a coefficient for the interrater agreement of the coding process. 

 

Deductive approach. Romanycia & Pelletier (1985) identified some elements in the character-

izations of “heuristics” in the literature on artificial intelligence that most of these characteri-

zations had in common – though some of them missed one element or another. Heuristics… 

 do not necessarily lead to successful problem solving (lack of guarantee); 

 are not algorithmic procedures (arbitrary device); 

 can reduce the problem space that needs to be searched (effort reduction); 

 often do not lead to the best solution but to a sufficient one (satisfactory solution); 

 can sometimes be very special and domain specific, and sometimes be applied to a 

broad class of problems (domain dependence). 

For their own analysis of the concept “heuristics”, Romanycia and Pelletier (ibid., p. 51 ff.) 

proposed four “dimensions of meaning”: 

 (uncertainty of outcome) – Heuristics exist in a “context of subjective uncertainty as to 

the success of their application”; they are “perfectly compatible with algorithms” and 

only opposed to those algorithms which “guarantee a practical solution to a problem”. 

 (basis in incomplete knowledge) – Heuristics are plausible without being certain; they 

are neither optimal efficient algorithms nor inefficient algorithms or processes. 

 (improvement of performance) – In some characterizations, heuristics include perfor-

mance improvements whereas in others they need merely be useful. 

 (guidance of decision making) – Heuristics as a group do not consistently influence 

memory, clarity of vision, creativity, thoroughness, or any other feature of problem 

solving; they guide decision making. 

Inductive approach. To analyze the selected characterizations, I tried to use the elements and 

dimensions by Romanycia and Pelletier; some of which were included into my set of catego-

ries. Nevertheless, there were certain aspects in the characterizations that were not covered by 

these elements and dimensions. This is the reason why I developed additional categories after 

going through the characterizations thoroughly.  

Table 2 contains the finalized set of category names and descriptions as well as coding  
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examples; Figure 1 shows a sample coding of characterization C2.  

Table 2: Descriptions of the coding categories for analyzing the characterizations of “heuristics” 

Category Definition Examples 

Descrip-

tion 

According to the author(s), what is the 

nature of heuristics? Descriptions range 

from “rules of thumb” to “kinds of in-

formation” and “cognitive tools”. 

“rules of thumb, general suggestions” (C8) 

“cognitive tools used to approach problems” (C2) 

“methods and techniques for solving problems” (C3) 

Effective-

ness 

What does the characterization say about 

the effectiveness of heuristics? Most say 

they offer “no guarantee for a solution”, 

but heuristics can also be defined as be-

ing “helpful for problem solving”. 

“Let us [...] define a heuristic as any device, 

technique, rule of thumb, etc. that improves problem-

solving performance.” (C1) 

“Most striking characteristic: By using them there is no 

guarantee for a solution.” (C3) 

“Heuristics at large can be seen as […], effectiveness 

of which is never known in advance.” (C2) 

Analysis Does the characterization explicitly 

mention understanding and analyzing 

the problem? 

“Heuristic strategies […] help an individual to under-

stand a problem better […].” (C8) 

“approach to representation, analysis and […]” (C2) 

Metacog-

nition 

Does the characterization explicitly 

mention metacognitive or self-regulatory 

activities? Are they included into or ex-

cluded from “heuristics”? 

“We call the very structure that organizes and controls 

such a [problem solving] process a heuristic […].” (C6) 

“solvers of those problems use (or can use) in planning 

and monitoring their solutions” (C2) 

Range Do the authors mention some kind of 

range of heuristics? To what kind of 

problems are they applicable? Are there 

different types of heuristics (e.g., local 

and global or domain-specific and gen-

eral ones) with different fields of appli-

cation? 

 “Some heuristics are narrow and domain-specific [...], 

whereas others are universal and cut across many prob-

lem-solving domains […].” (C2) 

“[…] divide heuristics roughly into two groups: those 

which relate to the whole process of problem solving, 

for example general planning (global heuristics), and 

those which are local in their nature.” (C4) 

Algorithm Does the characterization mention algo-

rithms or other “standard procedures”? 

Are these included into or excluded from 

the definition of heuristics? 

“A precise definition of heuristic […] will probably 

include some procedures that would be better classed 

as algorithms […].” (C1) 

“Heuristic methods and techniques differ in multiple 

ways from the usual mathematical terms, theorems and 

procedures.” (C3) 

Awareness Does the characterization mention 

whether problem solving techniques 

have to be executed consciously to be 

regarded as heuristics? Some characteri-

zations speak of “systematical” or “me-

thodical approaches” which seem to ex-

clude implicit / subconscious / intuitive 

uses of such techniques. 

“We refer to the concept of heuristics as a systematic 

approach to representation, analysis and transformation 

of scholastic mathematical problems […]” (C2) 

“[M]athematical heuristic is the information of […] 

solving problems methodically” (C9) 

Problem 

Space 

Does it refer to the concept of problem 

space (Newell & Simon 1972)? 

“This search space can be narrowed by heuristics.” 

(C5) 

Others Are there any other features that haven’t 

been covered by the other categories? 

“can be viewed as a way to partly compensate a lack of 

mental flexibility” (C3) 

“The aim of heuristic is to study the methods and rules 

of discovery and invention.” (C7) 

“gaining, finding, discovering, developing new 

knowledge and of solving problems” (C9) 
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Figure 1: Sample coding of characterization C2 

Development of the questionnaire. For the second part of the study, I developed a question-

naire to ask problem solving experts from mathematics education for their opinion on selected 

characterizations of “heuristics”. This idea goes back to a book chapter of Furinghetti and 

Pehkonen (2002) who analyzed the term “belief” in the very same way. For this question-

naire, the number of characterizations had to be reduced to keep the effort for filling it out 

within limits. I chose nine of the previously analyzed characterizations (see Table 1) making 

sure that entries of all the categories from the content analysis were represented in this sam-

ple. Also, some “famous” characterizations were included (C7, C8). In the questionnaire, the 

authors of the characterizations were not indicated. For each characterization, I asked the ex-

perts to answer the following two questions (like Furinghetti & Pehkonen 2002, p. 48): 

 Do you consider the characterization to be a proper one? 

 Please, give reasons for your decision! 

The final item was: 

 Your characterization: Please write your own characterization for the concept of “heu-

ristic”. 

Evaluation of the questionnaire. Like Furinghetti and Pehkonen, I sent my questionnaire via 

e-mail to fellow researchers
1
 asking them to judge the given characterizations. In the period 

before the ProMath 2013 conference (August 30
th

 until September 1
st
), I got 18 responses 

from experts from seven different countries.
2
 There were six experts from Germany (which is 

my home country so many of my contacts are German) as well as six experts from Hungary 

                                                 
1
 In July 2013, I wrote e-mails to all 18 problem solving researchers that preregistered for the 2013 ProMath con-

ference in Eger (Hungary). I additionally addressed 20 colleagues I knew from previous conferences on problem 

solving as well as experts from a list of researchers that Erkki Pehkonen kindly provided me with. 
2
 11 of the 18 preregistered conference participants (not counting myself) answered my call; 7 additional experts 

filled out the questionnaire. All in all, 47% answered my call. 
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(the place of the conference). Additionally, there was one expert each from Australia, Finland, 

Greece, Israel, and Sweden. To determine the experts’ nationalities, I used the nationality of 

the universities they were affiliated with at the time of the ProMath 2013 conference, because 

I did not gather personal information of the experts (one of them, for example, is originally 

from Croatia but works in Germany for some years, so s/he was considered German). 

Most of the experts judged all nine characterizations, some skipped particular characteriza-

tions and many of them wrote down their own characterizations. For a first overview, I coded 

the responses of the experts on a five-step scale, based on the research by Furinghetti and 

Pehkonen (2002): Y (= full agreement), P+ (= partial agreement with a positive orientation), 

P (= partial agreement), P- (= partial agreement with a negative orientation), N (= full disa-

greement).
3
 Sample codings are provided in Table 3 (experts being indicated by a “#”). 

The experts’ reasons for (dis)agreement have been considered carefully and all arguments that 

have been given individually by at least two experts are stated in the results section.  

 

Table 3: Excerpts of the experts’ responses in the questionnaire and examples of my codings 

Expert Response To Code 

#7 No, I don’t. It’s too general term for me. C1 N 

#6 I accept partly the characterization #3, because the heuristic tools, principles, strategies 

help to involve the solution and understand the problem. 

C3 P+ 

#6 This is very important, because in “ad hoc” method could prevent the problem solving. C4 P+ 

#11 Yes, I can agree. Students can have a sense of security if they know a heuristic method 

to solve a problem. 

C4 Y 

#3 This is the classical way, representatives of the information processing approach deal 

with problem solving and heuristics. For modern educational/practical use (and after 

ten years of teaching!) it seems to me too technical and too formal. 

C5 P- 

#7 No, I don’t. It’s oversimplification of the concept of heuristic. C5 N 

#11 I can’t take a commitment, because I feel, it can be truth, if ever it’s proved, that our 

mind and thinking and our whole world are computable. But if we assume the opposite 

of this, than I must believe that we can never understand nor the process of problem 

solving nor other complex mental operations in our mind by examinations of heuristic 

methods. We can simulate/model something near to this process, but not exactly that. 

That’s why heuristic methods are strange from many people’s thinking. 

C7 P 

#1 This definition has other character than the ones listed above. This is Pólya’s character-

ization of heuretic or heuristic. At that time the term heuristic, or heuretic, was used to 

describe a field of study. The next sentence elaborates on the educational use of the 

term heuristic that has developed historically to describe a process. So these are two 

distinct things. However, this is a simplistic interpretation of Pólya’s writing and no 

theory developed so far can explain the complexity of his words. 

C7 ? 

#1 Somewhat; Schoenfeld’s definition is okay, besides the first part of it (rules of thumb 

for successful problem solving).  I would not use the word rule and thumb because it 

implies sort of mechanical decision-making. Besides, the usage of it, does not neces-

sarily imply success. 

C8 P 

#18 Rather not. If one reads “science” for “information” it remains the task to precisely 

characterize how to gaining, find, discover, develope new knowledge and of solving 

problems methodically. 

C9 P- 

                                                 
3
 Erkki Pehkonen (mail from April 19

th
 2013) perfectly summarizes the benefits of written responses compared 

to marks on a Likert-scale: “I would today do just the same, since getting the written responses, you may ponder 

the answers. If you get only a number from 1…5, you cannot do anything else but calculate the mean value.” 



184 

 

Results 

The theoretical analyses of the characterizations as well as the evaluation of the experts’ opin-

ions both show that there is a wide variety of different – sometimes even contradictory – as-

pects of the term “heuristics” given and preferred respectively. No characterization covers all 

aspects of the categories from Table 2 and sometimes the aspects of one characterization con-

flict those of others. Additionally, there is no characterization favored by all experts. 

This section begins with results of the questionnaire evaluation and continues with a theoreti-

cal discussion of the characterizations (including some of the experts’ comments). 

 

Evaluation of the questionnaires – results. The individual coding of the experts’ responses 

is reported in Table 6 in the appendix; in the last column, the sign “*” means that an own 

characterization was provided.  

In order to get a better overview, the experts’ judgments are grouped according to their grade 

of approval / rejection in Table 4. There are four characterizations that seem to be generally 

approved (C4, C7, C8, C9), four that are rejected by the majority of experts (C1, C3, C5, C6), 

and one that is approved / rejected to almost even parts (C2). The reasons given by the experts 

are presented in Table 5 and are discussed below. 

 
Table 4: Degree of agreement / disagreement with the characterizations (C1 – C9) by the experts 

Code C1 C2 C3 C4 C5 C6 C7 C8 C9  

Y = Yes 0 3 0 4 0 2 6 4 4  

P+ = Partly Yes 5 4 4 4 2 2 2 6 4  

P = Partly 1 2 2 3 2 1 1 4 3  

P- = Partly No 1 2 4 3 4 6 2 0 3  

N = No 7 3 4 1 6 4 3 2 2  
           

No answer / judgment 4 4 4 3 4 3 4 2 2  
           

(Y&P+) vs. (P-&N) 5/8 7/5 4/8 8/4 2/10 4/10 8/5 10/2 8/5  
 

Reasons for approval. The characterizations C7 and C8 by Pólya and Schoenfeld have been 

recognized by (nearly) all experts. Reasons for these characterizations’ approval might be the 

authority of their authors or because they are used widely (and everybody got used to them). 

Or maybe, they just “fit” to what is needed by most researchers. The characterizations C4 and 

C9 have been translated by me (BR) from German into English; therefore, I highly doubt that 

being well-known could have been a reason for these two to be approved (like it might have 

been for C7 and C8). The experts stated that they liked the reference to (Pólya’s) problem 

solving phases and to the etymology of the word “heuristics”. 
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Reasons for rejection. Three of the four characterizations that were rejected by the majority of 

experts, C3, C5, and C6 (but not C1), have been translated by me; thus, there might be trans-

lation errors that led to rejection, but this does not seem to be the case here. Also, being origi-

nally in German, these characterizations are not well-known to an international audience. Be-

ing unfamiliar with a characterization might lead to its rejection, but there are well-argued 

reasons: The experts do not agree to heuristics compensating a lack of mental flexibility. They 

also do not agree with heuristics controlling a process or focusing on only the reduction of the 

problem space. To some extent, the inclusion of “unsystematic trial-and-error procedures” 

caused a controversy. 

 
Table 5: Reasons for approval / rejection by the experts (number of experts who say so in brackets) 

C. Experts’ Commentaries to the Characterization 

C1 Most experts (8) stated that heuristics should not include algorithms and would rather contrast these two. 

C2 Some experts (3) mentioned that they would not limit heuristics to “scholastic” problems. 

Also, they would not speak of a “systematic approach” (5). 

C3 Some experts (2) were puzzled by the word “education” in this characterization; and they would not re-

strict heuristics to “mathematical means” (4), but to non-mathematical techniques as well. 

A good part of the experts (6) does not agree to the claim that heuristics can be viewed as a way to “com-

pensate a lack of mental flexibility”. 

C4 There were experts (2) that complained about this characterization not being a proper definition, but giv-

ing only reasons why to use them. 

Many experts (6) agreed to highlighting phases in the problem solving process, but on the other hand, 

some of them missed phases like reflecting the problem or being stuck apart from having a plan. 

C5 Most experts (8) located this definition in the computer science / Newell & Simon tradition of problem 

solving research; though it was published in a pure mathematics education journal. 

Some experts (5) pointed out that no real definition of the term heuristic is given.  

Also, some experts (4) did not agree with heuristics being limited to narrowing the search space. They 

stated that the search space could also be expanded by heuristics etc. 

C6 Some experts (4) did not agree with heuristics controlling a process, which belongs to metacognition. 

Also, the expression “unsystematic trial-and-error procedure” caused some converse responses (4). Some 

agreed to this procedure being included into heuristics whereas others did not like it that way or thought 

this to be contradictory to “being a program” (from this very characterization). 

C7 Most experts (11) agreed that this characterization differs from the other ones of the list presented. Instead 

of defining heuristic techniques, it gives aims of the scientific discipline of heuristic research. 

C8 Some experts (3) stated the term “rule of thumb” does not really fit to heuristics (if this is the only attrib-

ute to characterize them). 

Most experts (7) did not agree to heuristics being for “successful problem solving” only, because there is 

no guarantee of success. 

C9 Some experts (2) liked the reference to the etymology of the word “heuristic”. 

A few experts (2) pointed out that heuristics do not necessarily belong to mathematics (e.g., working 

backwards) and that the term “methodically” does not fit the nature of most heuristic techniques (3). 

Also, some experts (6) stated that the word “information” does not make sense; this could be a translation 

error, the German original uses the word “Kunde” which could also mean lore, news, or knowledge; I 

used “information” because Wilson et al. (1993) used this very expression in their characterization. 
 

Analysis of the characterizations – results. In this paragraph, I discuss different aspects of 

heuristics, structured by my categories for the analysis of the characterizations (Table 2). 

► Effectiveness. Schoenfeld (C7) and Kilpatrick (C1) speak of “successful problem solving” 

and “improv[ing] problem-solving performance” respectively, whereas others like Bruder 
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(C3) speak of “no guarantee for a solution”. Actually, I doubt there is a serious discussion 

whether heuristics do or do not offer a guarantee of success; there is no good reason why they 

should be able to do so. Even Kilpatrick admits that there is “no guarantee of effectiveness” in 

the sentence following his initially cited statement. Some experts explicitly stated that lacking 

such a guarantee is one of the defining aspects of heuristics. For example, expert #3 added to 

Schoenfeld's characterization: “with a higher rate of probability (than without them)”. 

► Analysis. Some characterizations explicitly mention that heuristics can help to understand a 

problem (Koichu et al., C2); others do not mention this feature; no authors explicitly exclude 

analyzing a problem from their characterization of the concept. Again, I doubt that there is – 

or could be – a serious discussion about this feature. I see no reasons why this should not be 

part of anyone's concept of heuristics. (Experts #7 and #8 actually vote for also including oth-

er Pólya-phases like “Looking Back” into proper characterizations of the term “heuristics”.) 

► Awareness. We have seen that the term “heuristics” can be used for subconscious thoughts 

and processes (cf. Kahneman 2012) and expert #3 stated that “normally a heuristic method is 

applied unconsciously”. Though, several of the characterizations speak of a “systematic ap-

proach” (Koichu et al, C2), or “to plan […] consciously” (Tietze et al., C4). Kahneman (2012, 

p. 98) himself states that his interpretation of heuristics differs significantly from that of 

Pólya's (“procedures that are deliberately implemented”).  

► Problem Space. With this category, I wanted to check whether there is a direct reference to 

the concept of the “problem space” (cf. Newell & Simon 1972). There are characterizations 

with such a reference (like Heinze, C 5) and there are characterizations without. I see no rea-

son for such a reference being important for the understanding of the term “heuristics”, maybe 

apart from one aspect: References to the “problem space” most often imply an understanding 

of the problem solving process (and heuristics) as it is used in the AI community. This would 

come along with a conscious interpretation of the term “heuristics” as programs that affect the 

problem space. Therefore, this category could be related to the category of “Awareness”. 

► Range. Some characterizations speak of “disciplinary as well as interdisciplinary methods 

and techniques” (Bruder, C3) and of “narrow and domain-specific [or] universal and cut 

across many problem-solving domains” (Koichu et al., C2). No characterization opposes this 

view that heuristics can be used widely, but the question arises whether general strategies like 

means-ends analysis or situation analysis (often used in psychology) are applicable to prob-

lems that are relevant for mathematics education research. On the other hand, several experts 

stated that heuristics should not be limited to “scholastic” problems or “mathematical means”. 
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► Algorithm. Kilpatrick (C1) points out that “[a] precise definition of heuristic […] will 

probably include some procedures that would better be classified as algorithms”; whereas 

others like Bruder (C3) oppose the concepts of “heuristics” and “algorithms”. This opposition 

is often grounded in the “Effectiveness” and the “Range” of these two concepts (in a sense of 

“algorithms can only be applied to a narrow set of tasks but guarantee success, whereas heu-

ristics can be applied to a vast set of tasks and problems but do not offer such a guarantee”). 

At least five of the experts did not want to include algorithms into the concept of “heuristics”. 

► Metacognition. Authors like Dörner (C6, “the very structure that organizes and controls a 

process”) or Koichu et al. (C2, “in planning and monitoring”) explicitly include metacognitive 

activities, whereas authors like Schoenfeld (1985) differentiate between “heuristics” and 

“control” as different aspects of problem solving. Some experts (#1, #4, #8 amongst others) 

do not agree to metacognitive activities being part of “heuristics”, whereas others (#2) do not 

agree in differentiating these two concepts. No characterization explicitly excludes metacog-

nition from “heuristics” but the question remains whether or not this should be done. 

► Description. What actually are heuristics? In the characterizations, it varies between a “de-

vice, technique, rule of thumb” (C1), a “cognitive tool” (C2), a “structure” (C6), or no real 

description (e.g., C4 and C5). And also in the experts’ own characterizations, this varies be-

tween “conscious and non-conscious methods” (#8), “kind of things (e.g., information), avail-

able to a person in making decisions during a problem solving act” (#1), “strategies that po-

tentially can be applied to any mathematical structure” (#10), or “rules of thumb” (#3). An 

answer to this question should be related to the question whether heuristics are conscious or 

subconscious (“Awareness”). It should be obvious, that there has to be a description and not 

everything that “improves problem solving performance” should be regarded as a heuristic. 

Expert #13 states that “[t]here are also good habits and general advice for effective problem 

solving that are NOT heuristics, such as keeping good records or mulling on a problem after a 

period of intense work, talking to a friend about it, writing up the solution so far etc.” 

► Others. There are additional aspects in some characterizations that need to be discussed 

further. For examples, for some authors, heuristics might also help in “finding, discovering, 

developing new knowledge” (Winter, C9) or they might help in the compensation of missing 

subconscious skills (mental flexibility) (Bruder, C3). For Pólya (C7) and expert #13, “heuris-

tics” also stands for the “study of methods and rules of discovery and invention”. 

 

In addition to the experts’ comments presented in the theoretical analyses (see above), I pre-

sent three (of 13) notable characterizations by the experts (with footnotes by me). 
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 Expert #2: this expert prefers a definition according to Daniel Kahneman (“world fa-

mous psychologist and Nobel Price winner in economy”): “Heuristics is a procedure, 

which helps to find a suitable – many times not a perfect – answer for difficult ques-

tions.”
4
 

 Expert #13: “The subject ‘heuristic’ is the study of methods of discovery, invention 

and problem solving.
5
 The outcome is a set of ‘heuristics’. Heuristics are general ap-

proaches to problem solving, discovery and invention that are known to frequently 

move the solver towards a solution from a state of being ‘stuck’. Examples are […].” 

 Expert #15: “I like this Wikipedia quote: “Computer Science: a procedure for solving 

problems that is uncertain, inexact or not working for all input values; often used as a 

substitute for an algorithm that theoretically produces a more precise solution or even 

the best one, but needs too much time or too much effort.”
6
 

Discussion and Conclusions 

Expert #17 questioned my whole approach of asking experts by saying: “any definition is ac-

ceptable or not depending, in particular, on how you want to use it.”  Of course, this statement 

is correct and it is hard to argue against, but nonetheless, there are good reasons for compar-

ing characterizations: The evaluation of the questionnaires and the analyses of the selected 

characterizations show that there is no generally (and implicitly) accepted characterization of 

the term “heuristics” everyone can refer to. This is the reason why due to significantly differ-

ent meanings (e.g., subconscious vs. conscious use), a clarification is needed for every study 

that uses the concept (which is most often not given). With this research, I want to demon-

strate the importance of a (good) definition of the term “heuristics”; however, I am not the 

one to tell anybody which understanding of the term should be the “right one” (actually, I 

doubt there is a right one). This research also might point out some aspects of the term “heu-

ristics” which are worth a discussion or which are especially arguable. 

 

Suggestions for a unification of concepts. For some of the differences stated above, I pro-

pose ideas that might help clarifying the concept of “heuristics” for mathematics education. 

► Algorithm. I would tie this aspect to the “Effectiveness” in the way Romanycia and Pelle-

                                                 
4
 Kahneman (2012, p. 98) distinguishes his definition of heuristics from that of Pólya’s. Pólya’s heuristics are 

deliberately and consciously implemented, whereas Kahneman’s heuristics are a product of the subconscious 

processes. 
5
 This fits Pólya’s view of “heuristic” (C7).  

6
 Actually, this quote is from the German Wiktionary and was translated into English by me (BR) for this article. 

This description reminds me of the “ant colony optimization algorithm” (cf. Dorigo & Stützle 2004). 
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tier (1985, p. 57) did: “any device […] which one is not entirely confident will be useful in 

providing a practical solution, but which one has reason to believe will be useful […].” Ac-

cording to this characterization, something like the application of the p-q-formula for quadrat-

ic expressions
7
 would – dependent on the situation – sometimes be classified as a heuristic 

and sometimes as algorithmic. But this assignment would be done comprehensibly. 

► Awareness. Whether heuristics are conscious or subconscious (or both?) should be stated 

by everyone who uses the term. I would plead for “conscious”, because, for example, this de-

cision has direct implications for studies regarding the training of heuristic strategies. 

► Metacognition. The intermixture of the concepts of heuristics and metacognition might be 

unproblematic from the practitioners’ perspective (e.g., teachers). But for researchers, it is 

very important to differentiate between these two concepts (as hard as it might be). There are 

studies that would be impossible without such a differentiation like the one by Collet (2009) 

who compared a training of heuristics with a training of self-regulation as well as a combined 

training.  

As far as I know, there are two main reasons for the two concepts not often being differentiat-

ed in the literature: (1) In problem solving processes, it is very hard to distinguish between 

recognizing the need for heuristics and choosing an appropriate strategy, remembering and 

applying such a strategy, and evaluating its use afterward. (2) When Pólya (1945) wrote about 

problem solving in the 1940ies, about controlling the process as well as posing heuristic ques-

tions, the term “metacognition” had not been defined properly. When Flavell (1976) did so in 

the 1970ies, he mentioned several techniques that have also been described by Pólya. 

 

My own definition of the term “heuristics”. I hesitate to give a “final definition”, especially 

not before having conducted all the planned research (analyzing more definitions, applying 

them to examples, etc.). So far, I can present the following characterization which might be 

somewhat “clunky”, trying to cover many of the categories discussed above: 

“Heuristics is a collective term for devices, methods, or (cognitive) tools, often based 

on experience. They are used under the assumption of being helpful when solving a 

problem (but do not guarantee a solution). There are general (e.g., “working back-

wards”) as well as domain-specific (e.g., “reduce fractions first”) heuristics. Heuristics 

being helpful regards all stages of working on a problem, the analysis of its initial 

state, its transformation as well as its evaluation. Heuristics foster problem solving by 

                                                 
7
 The p-q-formula is an example used by expert #18 as a criterion for judging the characterizations – any charac-

terizations of the term “heuristics” that also included the use of this algorithm was a bad one for this expert. 
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reducing effort (e.g., by narrowing the search space), by generating new ideas (e.g., by 

changing the problem’s way of representation or by widening the search space), or by 

structuring (e.g., by ordering the search space or by providing strategies for working 

on or evaluating a problem). Though their nature is cognitive, the application and 

evaluation of heuristics is operated by metacognition. 

 

Future prospects. As stated before, I’m planning on analyzing more characterizations and 

applying them to examples. Expert #17 had the same idea: “For instance, "trial and error" is a 

heuristic strategy by some of the definitions in the questionnaire, and by some others it is not. 

Is it good or bad? How can we decide whether or not "trial and error" should be tagged heu-

ristics? What are the consequences of either decision for research or practice?” 

I would like to come up with a better characterization of the term “heuristics” and to clarify 

related concepts like “mental flexibility”. Also, the way heuristics work, why they are some-

times helpful in problem solving, needs to be discussed further. The characterizations give 

some ideas, it might be due to reducing effort (narrowing search space), or due to generating 

ideas (widening search space, compensating a lack of mental flexibility), or a combination of 

these and other effects. 
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Appendix 

Table 6: The codings of the experts’ responses in the questionnaires 

Expert C1 C2 C3 C4 C5 C6 C7 C8 C9 Def 

#1 N N N P+ N N ? P N * 

#2 - - - - - - P+ P+ P+ - 

#3 P+ P P- P P- P- Y P+ P- * 

#4 N N P- P- N P- N N P - 

#5 N P+ P- N N P+ N P+ P+ * 

#6 P+ Y P+ P+ P P Y P Y * 

#7 N N N P N N Y P P+ - 

#8 N P- N P- P- N P- P+ N * 

#9 P+ P+ P Y P+ Y P+ Y P * 

#10 P P P P P- P- Y Y P * 

#11 P- Y P+ Y ? P- P Y Y * 

#12 - - - - - - - - - * 

#13 N P+ P+ P+ P P- Y Y P+ * 

#14 P+ P- P+ P+ P- P- ? P+ Y * 

#15 P+ Y P- Y P+ Y Y P+ Y * 

#16 - - - P- N N P- P P- - 

#17 - - - - - - - - - - 

#18 N P+ N Y N P+ N N P- * 
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Abstract 

In every age and in every school word problems pose difficulties. Furthermore, 

we can state the same about learning computer programming in computer science. 

We draw parallels between the two domains, searching for similarities as well as 

differences. We introduce a graphical programming environment called Blockly 

[10], which can help us overcome obstacles and develope the abilities in solving 

word problems and programming.  

Blockly is the first block programming language available by a simple Internet 

browser. It is a user friendly, web-based (cloud-based), graphical programming 

editor developed by Google Inc. (based on the theoretical foundations of MIT’s 

block language projects ([17], [18], [20]). There is no need to type programming 

codes or to learn the language’s syntactical or semantical rules, so it is suitable for 

children’s first programming language and for those teachers who are not quali-

fied in information technology. Last but not least, it is free, available via web-

browsers, we do not need to install anything to our computer device or to our in-

teractive whiteboard in the classroom, or even our own tabletPC or smartphone. It 

is available from everywhere via Internet, therefore we can use it in the school or 

at home. 

In this paper we present an introduction to Blockly and some of its uses in 

mathematics: we solve word problems with Blockly showing several exercises 

from different classes and ages of pupils to illustrate the analogy of the two fields. 

We had experiments both in primary and secondary school. With the conclusions 

of the primary school testing we started further experiment in secondary school. 

Our other testing group was in the Grammar Secondary School of University of 

Debrecen. We plan to teach computer programming and algorithmization topics in 

Computer Science lessons in the secondary school from the October, 2013 to 

January 2014. So, we could not show the final results from all of pupils’ works in 

this paper. We plan it in another paper. Now, we can report the first conclusions 

and a short comparison between the primary and the secondary students’ works, 

attitudes and difficulties with this type of problem solving method. 

Blockly is a new, cloud-based programming language, and we have not found 

publications about previous experiments where it was used for solving various 

kind of mathematical word problems. We was wandered if Blockly was suitable 

programming tool as first programming language and mathematical word prob-

lems were suitable as first programming tasks that a child met in computer pro-

gramming lessons. 

Key words: word problems, problem solving, computer programming, Blockly 

ZDM classification: D53, Q63, R23 

mailto:kbubno@lib.unideb.hu
mailto:viktor.takacs@econ.unideb.hu


194 

 

1. About word problems 

Our modern world is strongly based upon the applied sciences including information 

technology. The first application of mathematics a child meets is word problem. Children do 

not like this type of exercises. Many publications investigate why are word problems so 

difficult for them and what kind of strategies can help in this topic of mathematical education 

[1], [5], [7], [9], [11], [14], [16], [19], [23]. 

The list below is a collection what didactic literature enumerate as the most common 

difficulties when we teach word problems [11]: 

– comprehension; 

– recognizing relevant data; 

– modelling the problem; 

– formalizing open sentences (translating into mathematical notations); 

– counting difficulties; 

– monitoring and answering the question (translating back to the situation). 

2. About computer programming 

By computer programming we solve some kind of ’word problems’ even they seem much 

more difficult that we have met before in mathematical lessons in the school. Our goal is to 

teach computer-aided mathematical problem solving. However, the ’tool’ we use is not a 

prefabricated mathematical software, but computer programming language, which we think 

the essence of computer science teaching. By the Hungarian National Curricula the basic 

elements of algorithmization are compulsorily acquired for everyone, but it is not specified 

any concrete programming language. So if we are computer science teachers we have quite a 

free choice. We can choose, for example, that we teach only as the tools of algorithmization 

like blockdiagrams, or describing algorithmization languages, so called pseudo-codes. We 

think, it could be better to teach algoritmization in practice with a children-friendly 

programming language, and it could be more successful if we teach this topics through well-

known problems, like mathematical word problems. 

3. Analogies and differencies 

We explored some analogies between mathematical problem solving and computer 

programming. The first we have to state that mathematics is never about just counting, as 

programming is never about only coding. 
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The next analogies are based upon George Polya’s famous problem solving model [19]. 

Word problems in mathematics Computer programming 

1. Comprehension, understanding the problem 

2. Devising a plan 

Determinantion of unknown variable Declaration of variables 

Mathematical model (plan) Algorithms and their implementation (plan) 

3. Carrying the plan 

Solving equations Compiling and running 

Answering to the questions of the starting problem 

4. Discussion (Looking back) 

changing initial conditions testing 

generalizing the problem debugging 

looking for other methods for solution optimizing code 

We have to mention also in the second phase of computer programming the algorithm part of 

the ‘plan’ (we can also call a pseudocode) is could be the mathematical model (equations, di-

agrams, graphs, etc.). 

Obviously we could find also many differences between the two area. The most interesting 

for us is the problem of different notations in mathematics and in computer languages. 

Most of the standard notations and methods in mathematics are well-known all around the 

world. This fact provides us more generality and public understanding. But in computer 

science lessons we can choose several kind of algorithmization tool or dozens of 

programming language to teach. These languages have various kind of syntactical and 

semantical rules. Furthermore, this question will be more complicated because of the 

orientation of language which are suitable for implementation. Different syntaxes of different 

languages use various kind of mathematical notations, rare the ones we have learnt before in 

mathematical lessons. Children can hardly to accomodate to the many kind of notations and 

rules. 

So in the algorithmic and implementation phase we translate our model to mathematical nota-

tions first, and after that we translate again into the chosen programming language. 

The second we have to mention about ‘translating’ is the method of nominating our variables 

and other parameters. In mathematics we try to create short one-letter names for variables and 

we can give general names like x or y as unknown. In computer programming we must not do 

that, because later, if we have a long (many hundreds of rows) program code, even the most 

experienced programmer can not read a code with too general names. So the variables have to 

refer the thing what we want to use for. 
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We suggest for the nomination should be used similar as Hungarian notation, what Charles 

Simonyi introduced for computer programming in C language [22]. 

4. Blockly. A visual programming editor 

Now we introduce Blockly, a free, open, graphical, web-based, interactive developing tool for 

young people and laymen to learn computer programming. The Blockly is one of the Google 

Inc’s projects; it started August, 2012 under the guidance of Neil Fraser’s engineering team 

[10]. Let us see its main characteristics. 

– It is free: there is no costs overloading families’ and our school’s budget if we 

wish to use it in our mathematical lessons. 

– Open: It can be used by anyone, without registration. 

– Graphical: We don’t need to type programming code, we just ’puzzle’ the code. 

– Web-based and interactive: Most of interactive, web-based called tool are only an 

interactive Flash-animation, nothing else. Blockly is not Flash-based tool. Blockly 

is really web-based, it is run in computing cloud. So it is device-free, and we don’t 

have to install anything special to our computing device (smartphone, computer, 

tabletPC, interactive whiteboard, etc.), we just need a web-browser. To tell the 

truth it is optimized for Chrome browser, but it have become one of the most 

popular browsers in the last two year. When we finish our program we get a link 

of our project what is stored in Google cloud, and we can refer and look back our 

work everytime when we open this link. 

Our meeting with Blockly was, when – as usual – Google the ’outsource’ translating, 

naturalizing and testing of their beta version software product. One of the authors undertake 

this testing and translated into Hungarian as a hobby activity. He made own applications as 

well. Later we decided to teach this simple programming tool for children in Hungarian 

primary and secondary schools. 

5. About block languages 

Blockly is one of the newest representative of the big family of block languages. There are 

other projects too (e.g., Scratch [20], MIT App Inventor [17], Code.org [6]), what are very 

interesting and motivative for learning computer programming, and, of course, there is a long 

history of this kind of languages and the idea of ’democratization’ of computer programming. 
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In the 1970’ies when personal computers have become more popular there was a thought that 

children from their early years should have to introducing computers and computer 

programming [18]. And not only children but everybody needs some knowledge about com-

puter programming, because in our everyday life we can realize that computers can help in 

our work if we are able to control them, but they can embitter if we are not. Some of compu-

ter scientists told it from the very beginning, and they worked for solving this question [21]. 

The timeline below shows the milestones of this process: 

 
Figure 1: Milestones in the History of Block Languages 

The latest remarkable event in the history of block languages was in December, 2013. 

Google, Apple, MIT, Microsoft and many other information technology companies 

campaigned for teaching computer programming in schools. The name of the event was the 

’Hour of Code’[6]. All over the world several educational institutions, pupils, teachers joint 

the event, and finally more than 27 million students have done the Hour of Code and written 

more than 993 million lines of code. The most popular languages were block languages, and 

well-known personalities from great information technology firms advocate the event and 

specially the teaching of computer programming prefered block languages. 

6. What kind of problems can we use and what teaching for? 

The varieties of usage are wide. It is a general programming language, but it has several ready 

applications beside the programming environment. In these applications we get a problem, for 

example a maze, where we have to walk out a man from. We can solve this problem, if we 

’write’ a program with given programming elements from the set of Blockly’s elements. 

These applications provide us some kind of introduction into the using of the language before 

we start to create an own program. Some of the applications are mathematical applications, 

for example there is a function plotter application. There is ’turtle graphics’ what is similar to 
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LOGO programming language. In this we can navigate a turtle, we can draw with it and we 

can transform our drawings. Plane application is a 3 level application for creating 

mathematical formulas for a given problem. With Block editor we can create own blocks, if 

we miss something from the set of elements, or we need some special, or we want to make 

own application (for example our Pursuit application in Figure 3). 

What we used was the ’Code’ page, where we can make own computer programs like in any 

other developing environments. The word problems we solved with the children were from 

Hungarian textbooks ([3], [4], [8], [12], [13], [15]), and the solutions were pupils’ solutions, 

obviously in Hungarian. The translating of the problems[2] attached before the screenshots. 

Let us see some examples. 

– To practice declaration of variables – problems of type ’I think of a number’. 

’I think of a number. If I add 5 to it, then I divide the getting number by ten, then I subtract 

two I get zero. Which number I have thought?’ 

 

Figure 2: Pupils’ solution 

With this type of problems – perhaps it is not a classical word problem – we want to show, 

how we could prepare the students to solve equations by Blockly. This could be the first step, 

when we show children how to solve the problem in details and how to use opposite (inverse) 

operations. 

– To use variables and simple mathematical operations – several types of word 

problems, algebraic or early diophantine word problems, joint work problems, 

problems from physics or chemistry which lead to linear equations or inequalities. 

Pursuit application is our own application. We made it with Blockly’s block editor. It is based 

on a classical Diophantine problem for young children. 
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’I have 35Fts in my pursuit. How many 2Ft and how many 5Ft coins I have, if I have maxi-

mum 21 from each type of coins. Write the plan with the program blocks how could you 

count!’ 

 

Figure 3: Our own application 

 

The other classical problem to illustrate these simple problems is Santa Claus’s pocket-

problem. 

‘There are some peanuts in Santa Claus’s pocket. He says, he has 44 peanuts in his two pock-

ets. If he put 12 peanuts from his left pocket into his right pocket, he has equal number of 

peanuts in his two pockets. How many peanuts are there in Santa’s left and right pocket?’ 

 

Figure 4: Pupils’ solution 
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– To use loops – sequences (arithmetic, geometric) 

– To use conditional statements – early heuristic problems 

’David’s mother is older than 24 but younger than 51. If we summarize the digits of the year 

she was born we get 22. How old is she now?’ 

 

Figure 5: Pupils’ solution 

 

In these examples we can see a heuristic problem solving by computer programming. Most 

children think about heuristic problem solving is just aimless trial and error experience what 

we do, and they hardly see the systematic way of thinking in it. But with computer 

programming we can show children this ’systematic trial’ (we can use program control 

structures for it, like loops, and ’if…then’ structures, and we think this is why children 

realized that this type of problem solving as serious and concious mathematically as solving 

of equations. 

– Introducing list, as a data structure – special algebraic problems 

In the following example we can see the using of program structures in a simple arithmetic 

inequalitiy problem. 

(As we can see the editor of Blockly has an opportunity to comments on our blocks.) 
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’Write a program what counts which numbers from the list make the inequalities true.’ 

 

Figure 6: Program structures 

7. About our experiment 

First we tested our idea in small groups of primary school children. We had two small study 

groups – 6 and 8 pupils from different classes and ages from 8–14. First group is a regular 

AppInventor and mobile device study group (we taught it in an elementary school in Debre-

cen; mainly boys were interested in the topics. The other group is a random group, in a 

summer day care camp organized by a cultural centre in Bátonyterenye, Nógrád County). 

We let children ’play’ with Blockly, to develop it, and we waited for the result. First, we 

introduced ready applications (airplane, pursuit, Turtle Graphics, etc.), later we gave them 

word problems and asked them to solve it by Blockly. What we must mention first, that no 

one of children missed paper! They started to solve the problem by their computer device at 

once, and they did not have difficulties with the use of the tool at all. But to tell the truth there 

were very simple problems what lead to simple equations. 

In this ages we stated the following: 

– children have difficulties with formalizing something into mathematical notation; 
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– the opposite operation is not obvious at all for them; 

– they had difficulties to state a model; 

– they also had difficulties when they should talk about a modelled or formalized 

problem, and say by their own words what is it about. 

So we suggest to practice it more often both on mathematics and computer science lessons, to 

develop the meaning of formalization. In our experiences it is a common weakness of 

mathematics and computer science teaching. 

In Blockly’s syntax we don’t have parantheses, but we must embedding one expression into 

another when we want to demonstrate the brackets or when we want to make operations with 

more than two variables. It posed some difficulties to children to think about the right 

sequence of the expressions and variables, but we think it is another benefit of the Blockly 

method, because the usage of parantheses could be more conscious. 

By Blockly we can inspire children to make problems by their own, what is important to get a 

familiarity in discussing of problems. 

No one of children like when realize, that his/her solution is false. But we saw children accept 

the criticism of a machine easier than that of a person, and we saw that programming was the 

best tool to teach children to accept their own mistakes and at this point not to leave the 

problem but to encourage correcting errors. 

’The area of a city is from 5 coincident squares. The layout of the city is L-shaped. The stone 

wall, bordering the city is the same km long, as the area of the city in km
2
. How long is the 

stone wall?’ 

 

Figure 7: Pupils’ wrong solution 
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After testing, when we broke their programs with wrong testing data children realized what 

did they wrong, and corrected their thinking about the problem. 

 

Figure 8: Pupils’ good solution 

Most of children monitore their result in paper, but they did not want to do that in computer! 

They said, that computer counted well, so they did not have to control. (So we can see 

children think, monitoring is about developing miscounts only!). So we suggested to build the 

answer and the monitoring into the program (as we can saw it at the examples). 

The typical problems we found were: 

– Declaration of variables. One of children’s typical mistake was that they wanted 

to declare too much variables, or they often made rotary declaration, what compu-

ter could not understand. So we had to draw their attention to express one variable 

from another instead of declaring always a new one, but we should do it carefully 

because of the rotary declaration what did not lead anywhere nor in mathematical 

problem solving nor in computer programming, as computer indicated for us with 

an error message. 

– Mathematical modelling problems. We met similar problems as in the former test 

group. 

– Distinguish between the knowledge of the user and the computer. It was a really 

interesting and instructive thing that children believe that computer is more 

intelligent than it is, and computer posseses the knowledge what they have. But, 

obviously, computer doesn not have that knowledge so they realized that 

programmer has to build into the programcode any small thing what we want to 
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be as the ’knowledge of the computer’. We think, this is a very important 

experience for children which make them more responsible about using 

technology. 

– Finding connection between the elements of mathematical model and the elements 

of algorithmization. It was not a serious problem; we found difficulties only in the 

beginning of the studying of programming. Pupils in secondary school correspond 

the elements of mathematical model and the appropiate algoritmization tool, as 

primary school children. It seemed children had to be some maturity to this 

process. 

– Using controling structures. Secondary school children in our test group were 

different orientation groups. We can state that every groups like the Blockly as 

programming tool, but there were more difficulties about the computer 

programming those groups whose orientation was not mathematical or 

engineering. At the same time we can state that the enthusiasm for Blockly was 

much more definite in the language orientation group as in the others including 

engineering team. Language orientation team like very much that they can control 

the computer. Engineering team has already met computer programming topic 

before, so it was not new to them. 

We have not detected problems with the following: 

– Comprehension - understanding problem. We can state that children in this 

secondary school have no difficulties in comprehension or the meaning of the 

problem. 

– Mathematical formalizing and notations. Children can use mathematical 

formalizing elements well. 

– Using Blockly’s graphical interface and syntax. Using of drag-and-drop based 

graphical interface was natural for pupils. The syntactical elements were also clear 

for them. Difficulties of using the tool did not divert their attention from the 

problem and did not take to discourage from solving the basic problem. 

– Speed of solving problems. The time they solved the problem with Blockly was 

not slower than with paper and pencil. 

– Understanding the importance of built-in monitoring and answering and 

discussing the problems. It was the first moment that monitoring, answering and 

discussing becomes children’s natural offer. This processes started so naturally in 
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the first time that later pupils initiated the analysis of the problems by their own 

and made tests with interesting data. So they wanted their solution to be reliable 

and they checked it. 

If someone could not finish his work in the lesson, he could continue it at home, if he saved 

into the cloud storage and sended the link himself about his program for example via e-mail 

or other way. For each five study group we created a closed group on Facebook. (All of our 

children were more than 13 years old, and they had Facebook-accounts.) They liked this 

method because they could share their solutions with each other or with us. We could 

discussed if someone need a help in homework as well by this way. 

The pupils in our test group were different orientation, class, grade and gender. They studied 

in five groups. We introduce them in Figure 9 infographics which is made with the data 

visualization tool of Microsoft Excel 2013 with Power Pivot 2013 business intelligence and 

data visualization software. The final analysis of the results for another paper will be 

processed with this program as well. 

An important benefit of the work was in the secondary school that students started to inquire 

computer programming. In December of 2013, the school and students joint the national event 

called the ’Hour of Code’, where we can show Blockly and AppInventor for Android block 

languages for other pupils in the school, and we made own moble device applications with 

them. 

 

Figure 9: Composition of test group 

8. Conclusions 

Using Blockly we obtain a promising new method to make mathematical lessons more 

interesting and more interactive for children. Furthermore, children in early scool year can see 
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that computer is not just a toy but a valuable tool to work, and they can see the relationship 

between mathematics and computer science in practice. 

We think, most of mathematics teacher feel the problem that they have to renew their 

methods. But they do not know, how could be modern, and, at the same time, how could they 

preserve the natural worths of mathematics. We think Bockly is a suitable tool for this 

purpose. Using Blockly requires creativity and autonomy from teachers and also from 

children. With the usage of Blockly in mathematical lessons an innovative mathematics 

teacher will not depend neither on ready exercise books nor on ready computer programs. 

Teachers can create own problems to their lessons, and they can also improvise with 

discussing problems, changing initial conditions etc. 

Blockly’s benefits for mathematical and computer literacy could be its: 

– simplicity, 

– quickness, 

– minimal syntactical errors, 

– similarity to mathematical knowledge, 

– accessibility, 

– easier using to any mathematical editor, 

– no accomodation of rules of programming languages, 

– built-in automated translator, 

– speed of solving problems. 

It is worth to explain the last two statement in details. 

Blockly has a built-in automated translator into other programming languages. So it can be 

suitable for talented children who are interested in computer programming seriously to start 

introducing other programming languages, like Java or Python. 

We examed the speed of solving problems by paper and by Blockly. We can say, when 

children are well read up on themselves in Blockly there was no difference between the 

duration of the two solving methods. The speed of Blockly method in problem solving is not 

slower at all as paper and pecil method, so teachers should not have to calculate with time loss 

when they plan their lessons with Blockly. At the same time, with Blockly we can solve those 

type of problems, specially heuristic problems, what we would not make in mathematical 

lessons because of their time-consuming counting periods. We write a program, so we make 

the model (the plan) of the solution, but we do not have to waste the time for long counting.  

The application of Blockly did not posed difficulties for children at all. They used it naturally. 

But as difficulties or problems we have to mention the rapid developing of the programming 
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environment. It is independent from us and we are providing the changes of the device, what 

we have to respond quickly. It is not favoured in mathematics teaching, but, in cloud 

computing technology it is natural, so, from the point of computer science teaching it has 

some benefit that we can demonstrate it to our pupils. 

It could be weakness from mathematical didactical point of view, that there is only 

mathematical operations with two variables in Blockly language. So, if we want for example 

add three or more variables, we have to embed more blocks into each other, and too much 

embeddings can result complicated formulas. We had to state, that it was difficult for primary 

school children. 

We think that mathematical and computer science program solving are similar intellectual 

processes, so they require analog didactical, pedagogical approach and methodological 

strategies. Mathematical didactics have a very large literature to make the problem solving 

process easier and help teacher how to teach it. We suggest for computer science teacher to 

’hire’ these methods and implement it into their own subject and lessons. First meeting with 

computer programming could be by solving mathematical word problems. 

Finally we can state that the main advantage of this method that children consider much more 

seriously the solving methods when they solved problems by programming. First they model-

led the problem mathematically, and then code to Blockly what is fitting to mathematical 

thinking and problem solving methods and it is a trendy latest technology (cloud computing) 

tool what is an important motivation aspect for the digital generation. So we can say that 

Blockly is an excellent tool of supporting subjects contact, in our case mathematical exercises 

what help computer science teaching, and computer programming that helps teaching 

mathematical problem solving. 
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Abstract 

Use of graphic calculators is officially not allowed in Hungarian middle and sec-

ondary schools. But in the last years more and more mathematics teachers may 

use the smart boards. Numerous functions of graphic calculators can be realized 

with help of smart boards. This makes necessary to think more consciously about 

the use of graphic calculators. I am teaching in a German school in Budapest, 

where the use of graphic calculators based on German curriculums is allowed. In 

two groups of students Grade 10 I made an experiment about the introducing the 

differential calculus with help of graphic calculators. We concentrated for two as-

pects, how much should we teach without graphic calculators at the concept for-

mation and problem solving, and at what point is desirable to allow their use in 

the teaching process. At the use of graphic calculators the visual representations of 

mathematical concepts comes in the foreground. Many students have problems 

with different representations of the function. They do not see the connection be-

tween them and cannot transform one representation into another. In our experi-

ment we emphasized these activities. In the brain-based mathematics teaching use 

of different representations is a base idea. In our experiment we tried to take into 

consideration of some new results of brain research.  

Key words: difference quotient; differential quotient; graphing calculator; representations; 

secondary grammar school 

ZDM Subject Classification: D43; D53; I43; R23 

 

Introduction 

Recently the usage of graphing calculators has been introduced in a lot of countries, including 

Germany, but unfortunately not in Hungary. Many studies showed (Ambrus, 1995; Dunham, 

2000; Lichtemberg, 1997) how graphing calculators can help pupils develop their knowledge 

and skills e.g. in the following areas: concept development, problem solving and computation 

skills. “Using graphing calculators in mathematics education bring also new methods of work 

- especially the possibility of exploration and modelling of mathematical problems, multiple 

representation of mathematical problems (numerical, algebraic, graphic, algorithmic repre-

mailto:varady.ferenc@kvifk.bgf.hu
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sentation) and graphic support of the results obtained by algebraic procedures” (Robova, 

2002).  

In my paper there are two mathematical concepts in the centre: the concept of the difference 

and differential quotient and the increase and decrease of a function in a given interval. Con-

cerning of these concepts representation has a very important role. The appropriate concept 

image of the difference quotient can be developed with this dual representation (Tall, Vinner, 

1981). Pupils have to learn to change between the enactive, iconic and after that the symbolic 

meaning of representation and applying them at problem solving. In this process the GC can 

provide much help, according to Kamarulhaili and Sim (2005): “The cognitive gain in number 

sense, conceptual development, and visualisation can empower and motivate students to en-

gage the true mathematical problem solving at a level preciously denied to all but the most 

talented. The calculator is an essential tool to all students in mathematics.” 

In Germany in the last decade teaching has had the following two significant characteristics: 

1. They have started to support the content of the curriculum with real life problems, and to-

day on them based mathematics is still present in great volume. 2. In secondary education it is 

compulsory to use a graphing calculator. Naturally, questions arise regarding both points: Are 

not the often dominant exercises used at the expense of theoretical knowledge? Are pupils 

able to apply mathematical relations in different contexts if theory is not appropriately estab-

lished? While using the opportunities provided by the graphing calculator do not they forget 

basic mathematical operations? How can they be trained in teaching to do basic exercises se-

curely also without a calculator? 

My answers to the first two questions point to the same direction. In my experience, if pupils 

do not get sufficient theoretical background, most of them do not see beyond relations drilled 

in practical exercises, they cannot generalise. In the case of questions asked in altered con-

texts they do not recognise relations, often they are not able to use the rules learned if the 

question is asked in other words. This is why I consider the five phases of learning defined by 

Meir Ben-Hur essential: Practice, De-contextualisation, Encapsulating a generalization in 

words, Re-contextualisation, Realisation (Meir Ben-Hur, 2006). I would like to point out the 

third phase, the encapsulating process, where generalisation has to be done and deepened in 

words and mathematically at the same time. I am going to answer the other two questions in 

this work. 

In the school where I teach and I made the experiment it is required to use a GC from class 9 

(14-15 years old pupils). The experimental classes were both 10th classes. In these classes are 

the main concepts of the difference calculus introduced. During this work great emphasis was 
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placed on methodology, I tried to use the advantages of teaching with and without a GC in 

parallel. 

Theoretical background 

Memory structures    

In the cognitive psychology we differentiate three forms of memories: sensory (perceptual), 

working memory, long term memory. The role of working memory is decisive at learning, 

problem solving.     

THE WORKING MEMORY: 

CENTRAL EXECUTIVE 

 

 

Phonological loop    Episodic buffer   Visuo-spatial sketchpad 

(inner voice)                                                 (inner eye) 

 

 Executive functions: goal setting, planning, organizing, prioritizing, initiating, holding infor-

mation, inhibiting irrelevant information, self-monitoring, memorizing, self-regulating, repre-

senting, problem solving                                

Limits of WM: very limited capacity holding 7  2 info units,  

time limit: 18 – 20 sec, goal maintenance, inhibit irrelevant information   

Overcoming the limits of Working Memory  

Chunking. It means the compression of information into lager units. For example to remember 

the number 238465197 is easier by building groups: 238 – 465 – 197.  

Another possibility is connecting the information to previous knowledge. We can build a con-

crete metaphor to the abstract situation.  

Automatism: if a student can handle a mathematical concept or apply an algorithm automati-

cally, there is no need extra capacity for them in working memory, more free space remains 

for other mental activities.  

To write down the relevant data, using graphs, tables. 

Brain-compatible guidelines for mathematics instruction (Bender, 2009) 

We analyse in detail only the role of representations as a relevant question in our topic.  

Bender writes about the use of representations. “New concepts in math should be presented at 

three levels: concrete (e. g. manipulative), pictorial or visual and abstract. Visualizing of math 

problems through the use of concrete examples and /or representational examples assists 

many students in mastery at almost every grade level. Manipulatives should be used across 

the grade levels for students with learning problems. Teachers should have students visualize 
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problems using manipulatives and then explain the result to each other. Have other students to 

develop a representation of a problem, while still others consider it abstractly. Have students 

consider the question: „How can we make mathematics representational?” This will assist 

learners who have strength in spatial intelligence.” 

The graphic calculators are god tools to realize the change of representations. As for the 

memory it is better to have 3 different memory traces for the same concept. In this case the 

chance for retrieval will be much higher. 

Basic instructional strategies to enhance learning.  

1. Gaining students’ attention. No attention, no engagement, no learning!  

2. Activating students’ prior knowledge and experiences. Having prior knowledge and experi-

ence that relate to current learning enhances memory and visa versa. In our case this was a 

difficult phase.  

3. Actively involving students in the learning process. Students will be able to retain 10% of 

what they read, 20% of what they hear, 30% of what they see, 50% of what they see and hear, 

70% of what they say, 90% of what they say and do 

4. Facilitate the ability of students to construct meaning. Mind tends to remember content that 

is meaningful and well structured.  

5. Students demonstrate their learning. It needs a careful preparation: organizing, separating 

essential vs. nonessential, connecting to previous knowledge, constructing meaning, chunking 

(compressing information into blocks), summarizing, teach to take tests. The aim should be 

the development of self evaluation of students, ability to reflect on himself (herself) as a 

learner: How do I plan to learn? How do I monitor my learning? How well did I do? Do I 

need to make changes? (Banikowksi, A. 1999)  

In our experiment we concentrated to realize these five ideas, at the constructing the meaning 

first of all the visual representations played dominant role. The visual representations of func-

tions gave a holistic picture about the whole concept.  

About the use of graphic calculators  

Horton (2004) thinks that GCs can help make connections among representations in the 

mathematics education and so they can help “permit realism through the use of authentic 

data”. In 2000 the National Council of Teachers of Mathematics summarised the results of 

many resources (e.g Ruthven, 1990; Smith & Shotsberger, 1997; Tolias, 1993) about the posi-

tive effects of using a GC: 
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 Speed: After students have mastered a skill, teachers allow the usage of graphing cal-

culators to compute, graph, or create a table of values quickly. 

 Leaping Hurdles: Without technology, it was nearly impossible for students who had 

few skills and little understanding of fractions and integers to study algebra in a mean-

ingful way. Consequently, lower level high school courses often became arithmetic 

remediation courses. With technology, all students now have the opportunity to study 

rich mathematics. They can use their calculators to perform the skills that they are un-

able to do themselves. 

 Connections: A sophisticated use of graphing calculators is to help students make con-

nections among different representations of mathematical models. Users can quickly 

manoeuvre among tabular, graphical, and algebraic forms. 

 Realism: No longer are teachers restricted to using contrived data that lead to only 

whole number or other simplistic solutions. Graphing calculators permit the creation 

of several types of best-fitting regression models. This capability allows data analysis 

to become integrated within the traditional curriculum; the tedium and difficulty of 

calculating a best-fit model are no longer factors in introducing data analysis into the 

curriculum. (pp. 24-32) 

Tiwari (2007) proved in his study too that the connection between the algebraic and the geo-

metric representations by GC can be deeper in calculus; the GC can support the understanding 

“when it is used as a supplementary instructional tool in achieving conceptual understanding 

and enhancing problem solving abilities of students in learning differential calculus”. Van 

Streun, Harskamp and Suhre (2000) showed in a study that the use of GCs can lead to 

changes in students’ approaches in problem solving. These positive changes have affected 

student achievement. Jones (2005) got similar results. He thinks that using graphing calcula-

tors, pupils can approach problems graphically, numerically and algebraically. Ng Wee Leng 

(2009) found that the use of various problem-solving approaches can support students’ visu-

alization in finding the solution and allow them to explore problem situations which they 

might otherwise not be able to handle. 

The technological advancement makes the usage of the tools of information technology and 

the media possible. Today the range of these tools is rather diverse. We may talk about differ-

ent computer applications, software, educational videos, and interactive boards. In recent 

times easily portable tools have come to the foreground. These might be „simple” or graphing 



214 

 

calculators, voting-machines, and we can download several useful mathematical and scientific 

applications even on smart phones. Timo Leuders also points this out in his work. In his opi-

nion, applying these new technologies may be especially important in mathematics: „Neue 

Technologien und neue Medien (gemeint ist meist: Computer) bieten für den Mathematikun-

terricht – mehr noch als die meisten anderen Schulfächer – die Chance zu einer grundlegen-

den inhaltlichen und methodischen Reform. Sie ermöglichen eine Entlastung von Routinear-

beiten und bahnen daher exploratives und kreatives Arbeiten, ebenso die Behandlung realisti-

scher Anwendungssituationen und das Vernetzen von Inhalten.”
1
 (Leuders, 2010)  

The question is, to what extent it is necessary and possible to use these new opportunities in 

teaching. According to Tulodziecky, the different tools of information technology have to be 

used as support and encouragement in school education, if the teaching process is problem, 

decision and organisation oriented (Tulodziecky, 2007). Tulodziecky considers the applica-

tion of the media especially important in five cases: 1. Difficult exercises with adequate de-

gree of complexity as initial conditions; 2. If we want to exemplify the goal or the route to the 

solution; 3. If the individual or cooperative work form comes to the foreground while solving 

a difficult task; 4. When comparing different modes of solution; 5. During the application of 

the theory learned and reflections to them. In my experience, pupils use the graphing calcula-

tor with pleasure, and they even use such applications that they do not need.
2
 Finally, I would 

like to mention the viewpoints of Erwin Abfalterer, which have to be considered by all means 

when planning a lesson with the computer (graphing calculator), so that the lesson flows with 

the greatest efficiency in the time available: 1. The software has to be prepared and tested; 2. 

The flow of the lesson is planned and the goals are set; 3. The exercises are given, the role of 

the teacher is clear; 4. A short feedback always needs to be possible. 

Research question 

How much supportive can be a graphing calculator in problem solving related to tangent line 

and the increase and decrease of functions? 

Research methodology 

In my school, in the Deutsche Schule Budapest the curriculum of the German Baden-

                                                 
1
 „New technologies and new media (is usually meant: computer) provide for teaching mathematics - more so 

than most other school subjects - the opportunity for a fundamental substantive and methodological reform. 

They provide relief from routine tasks and thus pave explorative and creative work, as well as the treatment of 

realistic situations and use the cross-linking of content.” 
2
 Namely, in the 11th class it occurred in the case of a simple linear equation that a pupil could not solve it with-

out a calculator, because the calculator had been doing it for him using the appropriate command for years. 
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Württenberg province is used. Pupils first meet the notion of functions shortly at the end of 

the sixth grade. However, this time they do not use the abstract signs yet that they are going to 

use later, but they examine the simultaneous changing of related phenomena (direct, inverse 

proportionality). The real concept of functions appears in the following year, also in connec-

tion with direct and inverse proportionality and the linear function. Here the mathematical 

meaning of the function concept already appears together with basic functional definitions 

(domain, range, zero of a function), representing functions (plotting), and the textbook and its 

publisher (Klett Verlag) provides the opportunity for the application of the graphing calcula-

tor. The quadratic function is introduced in the seventh grade, when exercises requiring deep 

mathematical knowledge and understanding are also integrated. Plenty of practical applica-

tions help pupils understand the forth and back relations between the real activity (enactive 

mode), the visual representation (iconic mode) and the abstract mathematical language (sym-

bolic mode). The concept of the function is then extended, the parametric functions are intro-

duced. We have the opportunity to plan lessons with the application of graphing calculators, 

but pupils only get these in the ninth grade. In my opinion, as long as they do not work se-

curely with functions, it is not either advisable to give them such directions. During class 

work we use the software GeoGebra that they also download at home, and they have to do 

homework with the help of the software as well. However, at this grade the spine line of the 

learning process is provided by the traditional method. The theme of functions does not ap-

pear in the ninth grade, it is present indirectly in the exponential, logarithmic part. 

Fortunately, all of the classes are provided with smart boards. They can help a lot during the 

teaching-learning process. The lessons are saved by me and they are uploaded on the internet 

so they can be downloaded by the pupils. During the lesson I can scroll to the earlier board 

pictures every time when I want to, so I can refer to the material learned earlier. Pictures made 

with GeoGebra can be saved as well. During the lessons I always have the opportunity to 

communicate with pupils and to help them. Furthermore, if some of them have problems, they 

can help each other as well. 

We had altogether 28 lessons for the examined topic – 7 weeks, four lessons a week. During 

this period the following chapters were covered: 

Lessons 1-4.: Reviewing functional elements. Domain, range, zero point, function value. 

Practice. 

Lesson 5-8.: Introducing the difference quotient. Practice. 

Lessons 9-12.: The differential quotient. Practice. 

Lessons 13-16.: Calculation of the differential quotient. Practice. 
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Lessons 17-20.: Derivative function. Practice. 

Lessons 21-24.: Derivative rules. Practice. 

Lessons 25-26.: Summary, practice. 

Lessons 27-28.: Test 

Discussion of Experiment 

I am teaching the two examined tenth classes. The 10a class consisted of 18, the 10b consisted 

of 19 pupils in the observation period. The mathematical knowledge of the pupils is consid-

ered to be general, the averages not considering this test were 2.73(standard deviation: 1.46) 

and 2.89 (1.24) in the whole of the classes (according to the German system, where 1 is the 

best and 6 is the worst.) The test was written by 12 and 13 pupils in the classes -due to illness. 

The averages of these pupils in the year apart from this test were 2.50 (standard deviation: 

1.26) and 2.57 (1.17). 

The pupils bought the TI-nspire CAS type graphing calculator (GC) that is used constantly in 

class and at home as well. The tenth grade mathematics curriculum starts with the functions. 

As a first step, we reviewed the most important definitions, and then five other lessons fol-

lowed. On these lessons we introduced the notions of the difference quotient, the derivate, 

derivate function, and the derivate rules, together with some simple related definitions. In this 

chapter I tried to use the graphing calculator and handmade calculation in parallel. 

We had altogether 28 lessons for the examined topic – 7 weeks, four lessons a week. During 

this period the following chapters were covered: 

Reviewing basic notions of function  

Domain, range, zero point, function value. 

In this chapter we discussed general functions, like e.g. quadratic function, square-root  func-

tion, rational function. Pupils had to recognise them and determine their domain, and they had 

to test points- if they could be found on the graph of the function or not. 

Word problems also appeared in this chapter: the volume of a roller had to be expressed 

through a radius.  

A tin has a volume of 0,5 l. Its radius is r, its height is h.  

a) How is the function equation ? 

b) Graph the function with GC and calculate the volume by ! 

c) A tin has a radius r and a height h. Its surface is 1000 cm
2
.  

Give the function equation !  

Give the maximum domain of the function g! 
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This task was not easy for most pupils, nobody could have solved the part a) alone and they 

actively needed teacher’s support. Two children from the group could have solved the prob-

lem helping them, with others we gave together the equation. We graphed the function with a 

GC and – by reading it – we determined the approximate radius. After that they calculated ap-

proximately the same value. The pupils had no problem with this part, they could have helped 

each other. In the question c) they had a same problem like in part one but three of them could 

have given the equation. With the others we solved the part together. Only few pupils could 

not give the maximum domain after the equation.  

Introducing the difference quotient   

The German textbook uses the phrase „Mittlere Änderungsrate – Main rate of change” besides 

the previously mentioned phenomena. After some practical introduction, e.g.: a ball is rolling 

down a slope and pupils had to determine its average speed, there were some elementary cal-

culation tasks and word problems among the exercises. Among the word problems there was 

the growth of a plant in a given interval described in a table, where the task asked about sev-

eral intervals.  

The height of a plant was measured during nine days. 

Day (d) 1 2 3 4 5 6 7 8 9 

Height (mm) 0 0 0 0 1 2 4 6 7 

How is the main rate of change of the function : 

a) In the whole 9 days;   b) In the first 3 days; 

c) In the last 3 days;   d) In the 3 days in the middle? 

In this task the pupils worked in pairs. All of the pairs could have solved the problem cor-

rectly, they found out the right answers without my support. In the next exercises the pupils 

solved all day problems. Here pupils had to see the degree of growth ( ) and the 

length of the interval punctually ( ). There were tasks for the approximately determined 

average flying speed that could be read from a graph and naturally, the exact average speed of 

a process given by the function term. Thus pupils met the most various problems. They had to 

examine the tasks accurately, they needed to filter out the important information and solve the 

exercise. The chapter could not be lack of the geometric discussion of the difference quotient, 

which was the slope of secant line. When solving exercises I always put great emphasis on us-

ing opportunities of doing a task with and without a GC parallel, so as to be able to improve 

the skills supported by both parts the best possible way. Later in the test I checked both op-

portunities through appropriate tasks. 
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Lessons 9-12.: The differential quotient 

The introduction of the differential quotient in this chapter began with the same ball exercise 

as in the previous topic, but the speed measurement interval was shorter
 

 

etc. Pupils faced the same various group of problems in the tasks as in the previous chapter. 

The calculator played a more important role here than before, as it could count the value of 

differential quotient a specific point. In this chapter the phenomena of the limit of difference 

quotient appeared ( , however, we counted with an appropriately low h value. This way 

we could only determine an approximate value, but the punctual GC solution was very similar 

to this. When using a GC it caused some difficulty that the formula for counting the differen-

tial quotient had to be given a little bit differently in the algebraic form than in the geometric 

form. This still caused problems for a few pupils later, after several weeks of practice. 

Differences between algebraic and geometric usage of GC 

Algebraic process Geometric process 

A: Calculate Calculus  Derivative at a Point 

 

 

 

B: Graph  2: Derivative at a Point 

 

 

 

Classes began with concrete counting exercises, and then we determined the approximate 

value of the differential quotient through a graph in given tasks. These exercises were fol-

lowed by word problems, like the actual speed of a consistently slowing car at specific mo-

ments, or counting the amount of water flowing in a reservoir at a specific moment with the 

help of the derivative of the given function. In this chapter we determined the term of tangent 

line at a given point with a GC. The difficulty in this process for many pupils was that with 

and without a GC algebraic and geometric processes were different. 

Calculation of the differential quotient 

The limit of difference quotient appeared here, which meant that the value of differential quo-

tient was already calculated with the help of the limit , but still not at specific points. 
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After the calculation of functions term we solved two word problems again, where the topic 

was consistently accelerating movement. The problems were finally solved correctly with a 

lot of teacher’s help explanation. Fortunately, pupils were discussing the same topic in Phys-

ics at the same time, so it was easy to draw a connection between the two subjects. At the end 

of the chapter we deducted the equation of the tangent line and solved exercises. Later, in task 

6 of the test I asked pupils to: ”Determine the tangent term of the function using GC: 

 at ! Describe briefly how you proceeded! Sketch the 

function and the tangent line using the GC on the sheet.” I wanted to know if there were pu-

pils who were going to deduce the term besides the GC solution and compare the two solu-

tions. One pupil did it. 

Derivative function 

In this chapter we derived a few derivative functions of polynomial functions (in their largest 

real domain), like: 

. 

Pupils had to memorize these; they knew in advance that I was going to check one of them in 

the test. The graph of a function and the graph of a derivative function also had important 

roles here. Pupils faced such problems where the two graphs had to be paired and such where 

the derivative function had to be drawn in the given graph of function and vice versa. They 

had to explain the connection between the graphs in each case. 

Derivative rules 

Three simple derivative rules were introduced in this chapter –without proof. These were the 

following: 1. Constant multiple rule; 2. Sum rule; 3. The polynomial or elementary power 

rule. With these rules we solved a lot of exercises, we derived functions. 

During the lessons and in the homework I encouraged pupils to do the exercises with and also 

without the graphing calculator. There were some situations where they were not allowed to 

use it, and there were some, where the function describing the process was such that they 

were not able to do the task without a calculator. Naturally, at the end of the chapter pupils 

wrote a test, where they were not allowed to use the GC for some exercises, one task could be 

done with and also without the calculator, and the last two exercises could only be done with 

the help of the calculator. I tried to combine a variety of tasks and it was very important for 

me that the pupils could also explain what they had done. In the first part there was an exer-

cise for a theorem and its proof, one exercise for the application of the definition of the differ-

ence quotient and derivate, one exercise for the visual representation of the the increase and 
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decrease of the function graph and its tangent lines at special points, and at the end an exer-

cise where the pupils had to find the pairs of functions and their derivate functions – they had 

to explain why they had made the pairs. In the second part the pupils used their GC. In the 

first task of this part they had to give the derivate function and the slope of the tangent line at 

a special point. The pupils could choose between solving this with derivate rules or with a 

GC. In the second task they had to give the term of the tangent line with a GC and to plot the 

function with their tangent line. In the third phase of this part the pupils had to plot a polyno-

mial function in a given interval and its derivate function and they had to explain the relations 

between them. There were two groups in which the tasks were similar to each other. One of 

the task sheets looked like the following: 

The function test 

Group  

Part A 

It is NOT ALLOWED to use a GC! 

1. Given the function . Give the derivate function and prove it. 

(1+3) 

2. Given the function . 

a) Give the difference quotient in interval [0; 2]. (3) 

b) Give the geometric meaning of the result. (1) 

c) Give the differential of f at  with . (3) 

d) Give the derivate of function. (2) 

e) Give the geometric meaning of the result in c). (1) 

3. See the function graph in interval 

 and answer the questions. 

a) Give the intervals when the slope of 

the function (of the tangent line) is 

positive. (3) 

b) Arrange the slopes of the tangents at the 

points marked in a growing order. (4) 

c) Draw the approximate tangent lines at 

the points B, C and D, and evaluate 

their slopes. (1,5+1,5)  

4. Couple the graphs of the functions (red) with the derivative functions (blue) and  

explain shortly why just the specified pairs were chosen. (4+4) 

A 

 

B 

 

C 

 

D 
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1. 

 

2. 

 

3. 

 

4. 

 
 

Group  

Part B 

It is ALLOWED to use a GC! 

5. Give the derivative functions of the following functions, and calculate the slope at the 

point ! Suggestion: calculate the derivative function and the value function without 

a GC, and then you can check them with a GC. 

a)      (3+2) 

b)      (4+2) 

6. Determine the tangent term of the function using GC: 

 at ! Describe briefly how you proceeded! Sketch 

the function and the tangent line using the GC on the sheet. (3+2+3) 

7. Given the function .  

a) Plot the function AND its derivative function with a GC, and sketch them appropri-

ately on the sheet. (3+3) 

b) Explain briefly why the derivative function is just seen at the zero points, or why the 

derivative function is only positive / negative where you see it. (3) 

The test was written by 25 pupils on time, and 12 pupils wrote a similar one two weeks later 

because of illness. There were no such big differences between the two groups (group  and 

group ) and between the two classes, therefore I assessed the results of the two classes to-

gether. These were the following (regarding the 25 tests): 

Part A 

1st task:  

Given the function . Give the derivate function and prove it. 

The theorem was perfectly written by 22 pupils, and 10 pupils gave the proof correctly. 3 

children began to write the proof but they could not end it. Unfortunately, 12 of them did not 

start to write the proof, however they should have learnt it and it was not necessary to find out 

new ideas. The results of this part were 84% and 46.7%. 

2nd task: 

Given the function . 
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It was a complex exercise but the different parts of them could be solved without the other 

parts. In this task I tried to find out how deeply the pupils understood the meanings of the dif-

ference quotient, differential, derivate function – and their geometric meaning. This theoreti-

cal background is very important e.g. for curve sketching. 

a) Give the difference quotient in interval [0; 2]. 

14 pupils answered well, only 4 could not answer the question. The others had the typical 

problem that they did not correctly substitute the points in the function. The result of this part 

was 69.3%. 

 

Figure 1: Pupil’s solutions: wrong substitution of points 

b) Give the geometric meaning of the result. 

18 pupils gave the geometric meaning of the difference quotient well while the others did not 

give anything or gave false explanations. The result of this part was 68%. 

c) Give the differential of f at  with . 

This task was correctly solved by only 6 children but just 5 did not solve it. Some pupils 

solved the problem with  so they got an approximated value for the differential. 

The result of this part was 53.3%. 

 

Figure 2: Pupil’s solution: for h = 0,001 

d) Give the derivate of function f. 
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In this part it was interesting for me which method was chosen by pupils for giving the deri-

vate function. Two opportunities were given: 1. with definition of derivate function 2. with 

derivate rules. Altogether 15 right solutions were given, and all of the pupils solved the prob-

lem with derivate rules. 3 children were not able to do it and the others made some mistakes. 

The result of this part was 72%. 

e) Give the geometric meaning of the result in c) . 

17 pupils gave the geometric meaning of the difference quotient well; the others did not give 

anything or gave false explanations. The result of this part was 68%. 

3rd task: 

See the function graph in interval and answer the questions. 

It was important for me in this task that the pupils did not only know the theoretical geometric 

meaning of the difference quotient, but they were able to apply it as well. If they could draw 

the tangent line, they could give its slope approximately. 

a) Give the intervals when the slope of the function (of the tangent line) is positive. 

13 of them found all of the three intervals and only 3 could not find any. The others gave one 

or two right intervals. The result of this part was 73.3%. 

b) Arrange the slopes of the tangents at the points marked in a growing order. 

14 pupils gave the right growing order for all points so they knew when the slope was positive 

or negative, too. Only three pupils could not understand the exercise, the others solved the 

problem partly right. The result of this part was 69%. 

c) Draw the approximate tangent lines at the points B, C and D, and evaluate their slopes. 

Seven pupils could draw the tangent lines correctly and could give their slopes too. Two chil-

dren drew only the tangent lines – without the slopes, and one of them could not begin this 

part. The others made some mistakes. The result of this part was 71.3%. 

 

4th task: 

Couple the graphs of the functions (red) with the derivative functions (blue) and explain 

shortly why just the specified pairs were chosen. 

The first part of this task was the most successful of all parts in this test. All pupils began this 

task and only two children made a little mistake. The result of this part was 95%. In the ex-

amination part there were some false pieces of information but except for two of them, pupils 

could give partly correct interpretations. The result of this part was 78%. 
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In this first part of the test it was not allowed to use a graphing calculator. The result of this 

part (A) was 71.1%. Here the pupils had to use the theoretical background of differential cal-

culus and they had to see the geometric meaning, too. In my opinion, they understood it well, 

thus the result of this part was quite good.  

In the second part it was necessary to use the GC. 

 

Part B 

5th task: 

Give the derivative functions of the following functions, and calculate the slope at the 

point . Suggestion: calculate the derivative function and the value function without a 

GC, and then you can control it with a GC. 

a)  

In this part the derivate function was given by 21 pupils correctly. 4 children could not give it 

nor with rules neither with a GC. The same happened with the substitution of , but one 

of the 21 pupils calculated wrong. The results of this part were 82.7% and 80%. 

 

Figure 3: Pupil’s solution with wrong substitutions 

b)  

In this exercise the parts of the function are more difficult than in a), consequently, the num-

ber of correct answers was lower. 15 pupils gave the correct derivate function and all of them 

could calculate the substitution of 3. Unfortunately, 6 pupils could not begin this task. 

The results of this part were 68% and 60%. In this task I could not recognise if the GC was 

used for checking the derivate functions or for substitutions or not. 

However, the GC was necessary for the solution of the next two tasks. 

 

6th task: 

Determine the tangent term of the function using GC: 
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at . Describe briefly how you proceeded. Sketch the function and the tangent line us-

ing the GC on the sheet. 

Six pupils could not solve the first part, one child solved it with both methods: with a GC and 

without a GC too, but he did not get the same term. The others solved it correctly, and the 

other two questions they could answer correctly. It is interesting that one pupil who could not 

solve the first part answered the other two questions correctly. The results of this part were 

74.7% 76% and 85.3%. 

 

  

Figure 4: Pupil’s and GC solution for tangent line  

In plotting the function and its tangent line at the following result was proceeded .e.g.: 

  

Figure 5: Pupil’s and GC plotting of tangent line 

7th task: 

Given the function .  

a) Plot the function AND its derivative function with a GC, and sketch them appropriately on 

the sheet. 
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In this exercise the pupils had to plot the functions graph and its derivate function with a GC. 

The difficulty with their TI-nspire GC is that there is another way to calculate the derivate 

function than to plot it. In the homework and in the lessons a few pupils always had problems 

because of the different ways of calculation. Finally, only two children could not plot the 

function correctly (92%), and two others could not either plot the derivate function (84%). 

  

Figure 6: Pupil’s and GC plotting of function and derivate function 

b) Explain briefly why the derivative function is just seen at the zero points, or why the de-

rivative function is only positive / negative where you see it. 

In this part the pupils had to explain why the derivate function is such in the picture. These 

descriptions were mostly correct by those who could plot both of them. There were just little 

mistakes or inaccuracies. The result of part b) was 74.7%. 

While I was writing the article we also discussed the topic of function analysis with the pu-

pils. During this chapter I strived to the above described methodological duality, which means 

that we solved exercises partly with a GC and partly without it. The test for assessing this part 

also showed this duality, and the results of the two parts were quite similar. In the last exer-

cise a word problem appeared here, where pupils not only had to solve the task with a GC, but 

they also had to choose the calibration of the function window of the GC well, and they had to 

answer and interpret the results based on the words of the exercise. Although this caused 

smaller or bigger difficulties for a few pupils, I still think that compared to the opportunities 

and the difficulty of the problem results were good: 

The next function gives the profile of a landscape in interval [1; 7]. The value x is km, the 

value of h(x) is 10 meters.  

 
a) Sketch the function with GC and draw the curve on the sheet. 

b) Calculate the maxima and minima of the landscape and their values with GC.  

c) Give the intervals of increase and decrease. 

The difficulties for some pupils were caused by the fact that the GC did not sketch the func-

tion in such an interval that would have been appropriate for them. First the division of the 
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axes should have been changed and then they would have been able to sketch it well (Figure 

5). Those who did not do this got partly wrong solutions. Still, 18 pupils did the sketching 

well, which I consider a very good result. The maxima, minima were well determined by all 

the 18 pupils within the interval with the help of the calculator, but only eight of them paid at-

tention to examining the end points of the closed interval. Because of the above reasons, these 

eight pupils determined the intervals of increase and decrease perfectly. 

   

Figure 7: Sketching of functioning exercise 4 with intervals 

Conclusions 

The application of GCs in teaching is ambiguous. On the one hand, they provide help with 

exercises that need a lot of calculation but have easy algorithms. Pupils use them with pleas-

ure, though the appropriate use of each application requires a lot of attention. On the other 

hand, such exercises can be solved with the help of GCs the mathematical background of 

which pupils know and are able to use, but with their familiar mathematical tools these tasks 

are not, or only difficultly solvable. 

However, we have to make sure that pupils are aware of the mathematical background as well 

and that they are able to do the learned processes without a GC where possible, so as to avoid 

the situation that I described in the introduction. I placed especially high emphasis on this idea 

when planning the lessons, in homework and in assessment. In this test I tried to find balance 

between theory and praxis and I wanted that pupils not only perfectly knew how to use a GC 

but they were able to understand the theoretical background, too.  

My research question was: “How much supportive can be a graphing calculator in problem 

solving related to tangent line and the increase and decrease of functions?” 

Pupils have to use GC in lot of problems in the curriculum of Germany. It is necessary to un-

derstand the meaning of tangent line and decrease of functions but without a lot of representa-

tions it is impossible. While the understanding of these mathematical concepts without GC is 

possible but in my opinion the GC is very usefully during this work. The pupils could have 

plotted the function of a mathematical problem; with the iconic representation of GC they 

could have started it with the solution. They were able to reflect immediately when the solu-
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tions are different with and without GC. During the lessons I was talking a lot with pupils 

about the exercises and of course about using GC. According to the children’s opinion they 

could have understood the problems of tangent line and slope of function better because they 

immediately saw the representations of this with GC. Firstly they had problems with program-

ing the calculators but they had possibility to help each other and of course, I supported them, 

too if nobody was able to solve the problem.  

According to my opinion, these were the reasons why pupils could have written the test with 

better results, what I had not hoped before: the average was in the theoretical part (Part A) 

71.1%. In this part there were lots of questions about the meaning of tangent line and about 

the slope of functions without GC. In the GC part (Part B) the result was 78% where the pu-

pils got questions, among others about the meaning of tangent line and the slope of functions. 

Both of them are good rates in an average class and they are also balanced. 

The tasks in the first part, where the pupils had to use the concept of the difference and differ-

ential quotient and the increase and decrease of a function, were: 

2. 
    

3. 
  

6. 
  

Average 

a) b) c) d) e) a) b) c) a) b) c) 

 69,3 68 53,3 72 68 73,3 69 71,3 74,7 76 85,3 70,9% 

However, the average of these tasks is a little bit lower than the average of the whole test but 

the difference is not significant. This can represent that the pupils were able to understand the 

theoretical background of the difference and differential quotient and the increase and de-

crease of a function as well.  

Unfortunately in Hungarian public and tertiary education it is still forbidden to use graphing 

calculators, which is regulated in the maturity examination system in the following way: „In 

solving the problems, you are allowed to use a calculator that cannot store and display verbal 

information. You are also allowed to use any book of four-digit data tables. The use of any 

other electronic devices or printed or written material is forbidden.” Based on my research 

experiences it would be desirable to introduce the use of GC-s in Hungarian secondary 

schools too.  
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Annex 

The detailed results of the test (1) 

 

      A♥ A♣ A♣ B♥ B♣ B ♥ ♣ AB 

1. thesis 1 100,0 85,7 91,7 85,7 66,7 76,9 91,7 85,7 84,0 

  proof 3 66,7 42,9 52,8 38,1 44,4 41,0 50,0 43,6 46,7 

2. a) 3 100,0 76,2 86,1 47,6 61,1 53,8 69,4 69,2 69,3 

  b) 1 80,0 57,1 66,7 71,4 66,7 69,2 75,0 61,5 68,0 

  c) 3 60,0 47,6 52,8 57,1 50,0 53,8 58,3 48,7 53,3 

  d) 2 90,0 71,4 79,2 64,3 66,7 65,4 75,0 69,2 72,0 

  e) 1 60,0 57,1 58,3 71,4 83,3 76,9 66,7 69,2 68,0 

3. a) 3 73,3 76,2 75,0 71,4 72,2 71,8 72,2 74,4 73,3 

  b) 4 70,0 57,1 62,5 75,0 75,0 75,0 72,9 65,4 69,0 

  c) 3 76,7 66,7 70,8 66,7 77,8 71,8 70,8 71,8 71,3 

4. a) 4 100,0 82,1 89,6 100,0 100,0 100,0 100,0 90,4 95,0 

  b) 4 100,0 71,4 83,3 71,4 75,0 73,1 83,3 73,1 78,0 

5. a1) 3 100,0 85,7 91,7 71,4 77,8 74,4 83,3 82,1 82,7 

  a2) 2 100,0 71,4 83,3 71,4 83,3 76,9 83,3 76,9 80,0 

  b1) 4 100,0 57,1 75,0 57,1 66,7 61,5 75,0 61,5 68,0 

  b2) 2 100,0 57,1 75,0 42,9 50,0 46,2 66,7 53,8 60,0 

6. a)  3 80,0 85,7 83,3 81,0 50,0 66,7 80,6 69,2 74,7 

  b)  2 100,0 85,7 91,7 71,4 50,0 61,5 83,3 69,2 76,0 

  c) 3 93,3 85,7 88,9 76,2 88,9 82,1 83,3 87,2 85,3 

7. a1) 3 100,0 85,7 91,7 100,0 83,3 92,3 100,0 84,6 92,0 

  a2)  3 100,0 57,1 75,0 100,0 83,3 92,3 100,0 69,2 84,0 

  b) 3 100,0 66,7 80,6 61,9 77,8 69,2 77,8 71,8 74,7 

Sum:   60 53,5 41,7 46,6 42,6 42,8 42,7 47,1 42,2 44,6 

Average of 

part 1 

  32 82,2 66,1 72,8 68,3 70,8 69,5 74,1 68,3 71,1 

Average of 

part 2 

  28 97,1 73,5 83,3 74,0 72,0 73,1 83,6 72,8 78,0 

Average      89,2 69,5 77,7 71,0 71,4 71,2 78,5 70,4 74,3 
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The detailed results of the test (2) 

 
 



232 

 

The Role of affective Components in mathematical Problem Solving 

Bernd Zimmerman 

Friedrich-Schiller-University of Jena, Germany 

bernd.zimmermann@uni-jena.de 

Abstract 

This paper is based on the dissertation „Analyzing problem solving processes in-

volved in problems from incidence-geometry“. First we give a summary of the 

goals, design and results of this work. We focus on the part of affective behavior 

which was analyzed too, but has not been published until now. The main affects 

which were detected in videotaped think-aloud sessions were reactions of the sub-

jects which were interpreted as feelings close to the goal, reactions which were in-

terpreted as feelings distant from the goal and reactions which could not inter-

preted clearly (hesitations). 

Keywords: problem solving, problem solving processes, affect, incidence geometry, category 

systems, sequence-analysis 

ZDM-classification: C 34, C 24, D 54, E 45  

 

Introduction 

While empirical studies on the cognitive aspect of mathematical problem solving have already 

a long tradition (cf. e.g. Duncker 19, Wertheimer 1945), the affective aspect of problem solv-

ing seemed to be neglected for sometime (Silver 1985, 254). This component gained increas-

ing attendance during the last years (cf., e.g., Goldin/Hannula 2013). For that reason we de-

cided to present some results, which had been gained in connection with a PhD study (Zim-

mermann 1977), but had not been published until now. It might contribute to the present dis-

cussion of this issue.  

First a summary of the foregoing study will be presented to highlight the background (includ-

ing the theoretical one) of that specific part we publish here for the first time. 

Background 

An exploratory study of mathematical problem solving processes was carried out with student 

teachers and some pupils from the upper grade of a gymnasium (n = 22; cf. Zimmermann 

1977). Starting points were - except the well-known books of Pólya - the habilitations of the 

cognitive psychologists Lüer 1973 and Dörner 1974, who analyzed think aloud protocols 
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from students, who solved problems from the “Principia Mathematics” (Whithead/Russel 

1964). One outcome was a “fundamental rhythm of thinking”. Our original question was: 

What could be the specific role of different representations (esp. of perception; cf. Bruner 

1966) during problem-solving processes? As we started this study in 1973, it was still the time 

of “New Maths” and “Boubakism”. So logic, formalism and abstract structures were still 

dominating the discussion in mathematics education of that days (as it is still up to date in 

mathematics university teaching, especially in eastern European states). The logical problems 

fit into this environment. We decided therefore to take problems from the domain of inci-

dence geometry. Besides logical inferences being also involved, there was the advantage, that 

different representations of “lines”
1
 and “points” might have some impact on problem solving 

processes. Two questions evolved: 1. Could we observe a similar fundamental rhythm of 

thinking as Lüer/Dörner? 2. What would be the role of perception in this case? 

The theoretical background was set up by the “information processing approach” mainly (cf. 

e. g. Newell/Simon 1972 and Klix 1971). 

Main results were as follows: 

 A classification system of mathematical problems referring to  

o formal (what is the problem?),  

o personal (for whom it is a problem?) and 

o normative (who is posing the problem?) aspects. 

 A method to construct categories for describing problem solving processes in a very flexi-

ble way. 

 A method for analyzing sequences of action which occurred more often than it could be 

expected by random. 

 Following hypotheses were generated: 

o There is a fundamental rhythm “weaker” than that found by Lüer. 

o Higher achievers solve problems in a more systematic way. 

o There is no difference between males and females in this context. 

o Reflective thinking (metacognition) has a positive effect on problem solving suc-

cess. 

                                                 
1
 Experience in a pilot study proved that students’ intuitive perception of “lines” hampered their concentration on 

the logical content of the axioms. E. g. it was very hard for the students to prove by referring to the axioms only, 

that if a line intersects one of two parallel lines, then it will intersect also the second one. As to their intuitive ex-

perience, this is a complete obvious fact, where nothing is to be proved. This “functional fixedness” to percep-

tion was loosened to some extent, when we replaced “lines” by “curves”. In this way changes between different 

representations (writing, drawing, and “laying” by wool-threads) were facilitated. 
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o Possible reasons for changes of representations are systematical one, critical situa-

tions, notations of ideas for possible solutions, writing down the result of a thought 

process. 

o There are two types of problem solving types: an iconic and an enactive one. The 

former represents objects by drawings, is more reflective, systematic, refers less to 

own writings and is a little bit more successful while the latter represents curves 

only by threads and points by rings, is impulsive, less systematic, refers more to 

own writings and is a little bit less successful. 

We sketch now the problem domain of incidence geometry, to give some ideas about the 

mathematical content: 

The subjects had to do their proofs by referring to the following Axioms exclusively: 

(1) Exactly one curve passes through two points 

(2) Parallel-axiom  

(3) Existence of at least 3 points not all on the same curve. 

They had to prove three theorems as follows: 

Theorem: There exist at least 4 different points, from which no 3 points are located on the 

same curve. 

More details can be also found in Zimmermann 1980, 1982. 

Goal of the study 

What is the role of affective behavior when solving problems from incidence geometry? 

Method 

We used the following three categories concerning affect: 

Affective expressions of feeling closer to a solution of the problem were detected by reactions 

of the subject like: 

 being motivated (“now I am on the right track!”) 

 praising her/himself 

 being positive surprised (aha-experience) 

 expressing (subjective) idea of solution 

Affective expressions of feeling more distant from a solution of the problem were detected by 

reactions like being insecure, helpless, depressed, aggressive or embarrassed 

Finally, there we observed hesitations which could not be attributed clearly to such feelings. 



 

The problem solving sessions were videotaped and - using this and the comprehensive and 

very flexible category-system - written protocols were created. 

The protocols had the following structure (X denots different arbitrary actions): 

 

Table 1. Parallel sequences of actions referring to different foci. After setting priorities, these were “compressed” 

into one (shaded) sequence to be analyzed 

When transcribing the videotapes, we looked for twelve different aspects where we noted ac-

tions (from left to right) which could also happen simultaneously. We came from one “mo-

ment” (micro-episode) to the next, if at least one activity in the very column changed (average 

time for one such “moment”: about 20 seconds). After transcribing all videotapes of all ses-

sions, we made a validity check by two additional researchers (Prof. Hefendehl and Prof. 

Bedürftig). The rate of correspondence was between 70% and 80%. 

Because we were interested in specific actions (e.g., solution ideas, mistakes, but especially 

now: affective behavior) and possible reasons and consequences of their occurrence, we made 
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a sequence analysis of their “pre-“ and “post-history”, i. e. we formed single sequences of ac-

tions were we looked for sequences of two up to 5 consecutive actions (including the specific 

one), which occurred more often than it could be expected by random. 

To form one out of twelve sequences, we implemented all protocols into a computer and put 

all protocols of all subjects together to a “super-protocol”. Then, we started with the line “ver-

bal”, because this proved to be the most objective and reliable information, set priorities and 

substituted all actions in “verbal” by actions of the other lines, if they had a higher priority. 

In case of occurrence in the same line, content of a cell in the first line (“verbal”) was to be 

replaced in the given order by (cf. Table 1) 

(1) Affective behavior  

(2) (objective) solution idea (if there is no (1) in the same column) 

(3) Change of representation (if there is neither (1) nor (2) in the same column; writing (w), 

drawing (d), manipulating (m)) 

(4) Reference to writing, drawing, manipulating (no (1, 2, 3) in the same column). 

After this process was finished, we analyzed new single sequences, created in this way, like 

(real sequences were much longer): 

… 
verbal ut-

terances: 
close obj. idea drawing ref. draw. X … 

Table 2. Super-sequences of actions to be analyzed, including expressions of affective behavior and other actions 

of high priorities 

Of course, other substitutions by other priorities are possible. 

First we detected the absolute and relative number of all such actions with respect to the total 

number of all “micro-episodes” of all subjects. The computer detected 4477 actions, corre-

sponding to a little bit more than on average one hour of problem solving time of every subject. 

Action Frequency abs. (total 4477) Frequency rel. % 

affective 

behavior 

Close 273 6.1 

Distant 252 5.6 

Hesitating 381 8.5 

(objective) idea 115 1.5 

writing 192 4.2 

drawing 112 2.5 

manipulating 46 1.0 

reference to writing 147 3.2 

reference to drawing 243 5.4 

reference to manipulating 25 0.6 

Table 3. Absolute and relative frequencies of affective actions and others of high priority 



 

For carrying out the sequence-analysis, we estimated the probability of each action by its  

relative frequency. Assuming random distribution and independence of the variables, the 

probability of the occurrence of the sequence of the three consecutive actions 

closeideadrawing (cid) can be estimated by P(cid) = 0.061*0.015*0.025=0.000024.  

We checked now by binomial-test, which of all such 3-sequences (n=4357) occurred more of-

ten than it could be expected by random. Taking into account the accumulation of the error 

probability when applying such test repeatedly, we set the error-probability for a single test 

p=0.00001, to get an error probability for all tests of =1-(1-0.00001)
4357

0.04. 

Results 

The results for all significant sequences with three actions, containing “feeling close” to the 

goal, are as follows: 

Frequency ab-

solute 
Action 1 Action 2 Action 3 

20 
reading/interpreting text close reading/interpreting 

text 

7 writing close ref. to written 

6 referring to written writing close 

3 idea close intention to write 

2 intention to write ref. to written close 

2 I feel close close I go for goal 

2 referring to written close new start 

2 intention to write ref. to written close 

2 short break idea close 

46 total  1% 

Table 4. All significant sequences of three consecutive actions which include “feeling close to the goal”  

(abs. fr.  2; 0.04) 

 

We can see that the feeling of being “close to the goal” seems to be mainly related with read-

ing, writing or referring to text. 

The results for all significant sequences with three actions, containing “feeling distant” from 

the goal, are the following: 
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Frequency ab-

solute 
Action 1 Action 2 Action 3 

9 
reading/interpreting 

text 
distant 

intervention 

7 distant intervention distant 

7 intervention distant intervention 

6 referring to drawing intervention distant 

4 short break reading/interpreting text distant 

2 
distant intervention checking goal-

distance 

2 
distant intends to search an “oper-

ator” 

operator not appro-

priate 

Total 37 0.8% 

Table 5. All significant sequences of three consecutive actions which include “feeling distant from the goal” 

(abs. fr.  2; 0.04) 

 

There is the impression that “feeling distant from the goal” is mainly related to interventions 

of the observer of the problem solving session, whose only task was to keep the subjects 

thinking aloud. So it seems plausible that in situations where the subject feels stuck, the leader 

of the session has to motivate to continue to talk. Furthermore; referring to (given) text draw-

ings seem to be also somewhat tied to this feeling of distant. 

The “local context” of “hesitation” was as follows: 

Frequency 

absolute 
Action 1 Action 2 Action 3 

19 
reading/interpreting 

text 
hesitating reading/interpreting 

text 

15 
reading/interpreting ac-

tual problem 
hesitating reading/interpreting ac-

tual problem 

4 
hesitating reading/interpreting the 

actual problem 
checking goal-distance 

2 
memorizing text hesitating constructing connec-

tions 

2 intends to draw hesitating drawing 

2 
checking goal-distance hesitating makes additional as-

sumption 

Total 44  1% 

Table 6. All significant sequences of three consecutive actions which include “hesitating”  

(abs. fr.  2; 0.04) 

 



 

“Hesitating” seems to occur mainly in situations where the subjects is reading or interpreting 

text, especially that of the actual problem. This might be interpreted as attempt to understand 

better important “givens”. Also the other significant sequences might express somewhat inse-

curity or attempts to compare the very status with requirements still to be fulfilled. 

We carried out additional tests with sequences of 4 consecutive actions, including at least one 

of these three feelings. But we gained not new insight, as can be see form Table 7: 

Frequency 

absolute 
Action 1 Action 2 Action 3 Action 4 

11 
reading/interpreting 

text (prob.) 
hesitating reading/interpreting 

text 
hesitating 

6 
reading/interpreting 

text (prob.) 

break reading/interpreting 

text 
distant 

3 
referring to drawing reading/interpreting 

text 
hesitating 

distant 

3 
operator not appro-

priate 

reading/interpreting 

text 

referring to drawing 
close 

3 
referring to written writing close referring 

to written 

Abs. frequ.  3; total 26  0.6% 

Table 7. All significant sequences of four consecutive actions which include “close”, “distant” and “hesitating” 

(abs. fr.  3; 0.04) 

Summary 

 All registered affects were mainly connected with reading and interpreting text. 

 Positive affects were additionally related to own productions. 

 Hesitation and negative affects were sometimes additionally related to reference to draw-

ings. 

Discussion 

 Appropriate reading- and writing competences (cf. PISA-outcomes) seem to be important 

also in this “classical” domain. 

 The type of problems was quite normal at that time - it was the time of “New Maths” also 

at school. Incidence geometry is still a usual esp. at university-curriculum, esp. in Eastern 

Europe. 

 The normal habit of trusting your perception and the formal, axiomatic approach, required 

here, were often conflicting. 

 The methodology presented here can be applied also in settings of today. 
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