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Preface

The sixth international ProMath Conference was organized at the

University of Debrecen (Hungary), 8-11 September, 2005. There were

altogether 13 participants from different countries (Germany, Finland,

Hungary, Slovakia) of whom most had a presentation. This volume contains a

short historical introduction and almost all of the papers given on the

conference.

At the meeting there were 12 presentations. The presentations had a

time slot of 30 minutes with a following-up discussion of another 30 minutes.

In the Proceedings the presentations are ordered alphabetically.

Problem solving has been one of the main directions in the

international discussion on the teaching of mathematics. The topics of the

presentations are from different areas of problem solving and mathematics

instruction. We can find concrete suggestions for mathematics instruction of

talented students, ideas for teacher training and some theoretical questions.

The papers in the proceedings are peer-reviewed as organized by the

editor. Every paper was read and commented by two anonymous peers. The

action improved remarkably the quality of most papers. However the papers are

neither proof-read by the editor, nor has their language been checked. Every

author is responsible for his/her own text. The e-mail addresses and the

workplaces of the authors can be found in each paper.

The meetings of the research group ProMath (Problem Solving in

Mathematics Education) are based on an initiative of Professor Günter

Graumann (Germany), Professor Erkki Pehkonen (Finland) and Professor

Bernd Zimmermann (Germany). The ProMath Group was founded in 1998 on

the suggestion of Erkki Pehkonen (Finland) as a Finnish-German Group.
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The ProMath Group wanted to promote the research about problem

orientation in mathematics teaching and its practice in school. In July 1999 this

Group met in Jena (Germany) on a conference about creativity. In September

2000 they organized a little meeting at the University of Bielefeld (Germany).

In May 2001 they met in Turku (Finland), where a Greek Colleague joined

them, so the ProMath Group became an international group. In September 2002

a meeting took place in Bielefeld. In 2003 a ProMath Conference was held in

Jena with participants from Denmark, Finland, Germany Greece and Hungary.

In June/July 2004 a bigger conference was arranged in Lahti (Finland). This

conference was before the ICME 10 (Copenhagen), so a lot of people could

visit it. In September 2005 the sixth ProMath Conference took place at the

University of Debrecen (Hungary). The seventh ProMath Meeting is planned to

take place in September 2006 in Komárom (Slovakia).

Proceedings were published for the following meetings: Turku (2001),

Jena (2003), Helsinki (2004) and Debrecen (2005).

Keywords and phrases: Problem solving, new researches on teaching

of problem solving, problem solving processes, mathematically talented pupils.

ZDM Subject Classification: C 30, D 50.

Debrecen, May 2006

Tünde Kántor
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Introduction to the sixth ProMath-Conference

Dear colleagues and friends,

working with problems in mathematics teaching is very important for reaching

several general aims, for the students view of mathematics and so on. I will not

go in details here; you can find a lot of literature about it. Though this is well-

known in didactical theory the practice at school often is missing such phases

of problem orientation.

To promote the research about problem orientation in mathematics

teaching and its practice in school on the suggestion of Erkki Pehkonen in 1998

we did found a Finnish-German-Group which later on was called “Promath-

Group”.

In July 1999 this group met in Jena together with mathematicians and

psychologists on a conference about creativity1. After that in September 2000

the ProMath-Group arranged a little meeting at the University of Bielefeld. In

May 2001 then we met in Turku where a Greek colleague joined us2. From that

time the ProMath-Group slowly change from a binational to an international

group. In September 2002 another little meeting took place in Bielefeld. One

year later in September 2003 a ProMath-conference with participants from

Denmark, Finland, Germany, Greece and Hungary was held in Jena3. In

June/July 2004 the ProMath-meeting was arranged as bigger conference in

Lahti just before the ICME in Kopenhagen. So a lot of people out of the whole

1 For the proceedings of the conference see: Zimmermann, B. et al. (eds.) 1999. Kreatives Denken
und Innovationen in mathematischen Wissenschaften, Jenaer Schriften zur Mathematik und
Informatik Math/Inf/99/29.
2 See: Veistinen, A.-L. (ed.) 2002. Proceedings of The Pro Math Workshop in Turku, University of
Turku, Department of Teacher Education, Pre-Print nr. 1, 2002.
3 See: Rehlich, H. & Zimmermann, B. (eds.), 2004. ProMath Jena 2003 – Problem Solving in
Mathematics Education, Franzbecker: Hildesheim.
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world which are interested in problem solving in mathematics teaching could

visit this conference4.

And now I am glad that we can hold our sixth ProMath-conference in

Hungary where problem orientation in relation to mathematics has as long

tradition. But I am also glad to be here in Hungary because I can see again

several Hungarian friends.

I would like to send big thanks to all local organizers, especially our

colleague András Kovács, for helping us to prepare and arrange this

conference. I am sure we all together will have a nice and successful meeting.

Günter Graumann

4 See: Pehkonen, E. (ed.) 2005. Problem Solving in Mathematics Education – Proceedings of the
ProMath meeting June 30 – July 2, 2004 in Lahti, Department of Applied Sciences of Education,
University of Helsinki, Research Report 261, Helsinki.
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Space perception abilities (and space geometrical problem
solving) in a group of 3rd year university teacher students

Tünde Berta

Eötvös Loránd University

E-mail:

Abstract: In my PhD research I focus on teaching space geometry and space

geometry problem solving combining different tools (computer animation,

traditional models, worksheets etc.). I work with third year university teacher

students. In this article I write about a pilot study pretest, especially about its

space perception part. With help of this test I try to analyze students’ space

perception abilities and space geometry problem solving skills, which are

relevant to my work. With help of this test I try to identify their level in these

skills.

Introduction
In school geometry carefully designed demonstration is very

important, because through concrete experience students learn to collect and

acquire attributes and to develop and formulate a mathematical concept step by

step. During this process students have to separate (differentiate) the individual

and general, static and dynamic, concrete and abstract character of the used

models. Within this process are necessary consciously designed, demanding

and various models.

At Eötvös Loránd University I run a course with third year university

students who want to become teachers of mathematics whose title is

“demonstration and experimentation on math lesson”. In these lessons we look
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for typical school teaching situations. The central aim of these lessons is to give

personal experiences in addition to the theoretical discussions.

Usually, we choose a problem for university students; we prepare a set

of computational and paper and pencil tools, which can help them to find the

solution. During the problem solving process they can choose the way of

visualization (enactive, iconic and symbolic in sense of Bruner (1970)), the

method of solution and the social form. I try to show a possible design of a

demonstration relevant to the problem. The students have to transfer this

method to the secondary school level. To transfer this method means to

formulate a relevant problem, considering the proper knowledge, the way of

thinking and the ways of learning of the pupils. By the preparation of the

problem solving process they have to collect different tools for designing a

demonstration. These exercises give each student some didactical experience

depending on their problem solving skills (see more in Berta (2005).

My main research focus is on the question how to combine traditional

teaching and computer based tools (three basic tools: worksheets, manual

model and computer animation) in mathematics education, mainly in teaching

of space geometry. I made a pilot study to prepare a main case study with my

students in a „demonstration and experimentation on math lesson” course.

My main research questions in this case study were:

What kind of changes happen in teacher student’s (pedagogical)

knowledge, when they have worked through the course “Experimentation and

modeling on mathematic lesson”:

1. in the use of space perception skills

2. in the understanding space perception skills

3. in the space geometrical problem solving skills?
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Pretest on space perception
Visualization and primary experiences should play a more important

role in geometry, in order to highlight deeper mathematical relations and to

make the process of understanding easier. Without a complex use of space

perception the teaching and understanding of higher-level space geometry

becomes useless as skills for generalization, problem-understanding and

problem-solving cannot be developed properly.

As a part of this pilot study I gave a pretest to my student at the

beginning of the course. This test was specially designed to find answers to the

following questions:

1. What are the students’ own attitudes towards computers before

beginning the course?

2. What is the students’ opinion about computer aided mathematics

teaching?

3. What is the students’ opinion about model aided mathematics

teaching?

4. What is the students’ opinion about the importance of geometry

teaching?

5. Which intuitive space geometry skills and space perception ability do

students have?

6. Which skills of space geometry problem-solving do the students have,

what strategies do they use?

In addition to the outcomes of the test I tried to find out explanations,

which might help me to elaborate the problem-solving strategies used by the

students and their way of thinking.

The test had three parts:
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- A questionnaire part – including 16 questions, by which I tried to find

possible answers for questions 1-4.

- A space perception part – including 7 tasks – in details in the next part

of the article (cf. pp. 6.).

- A space geometry problem solving part – two space geometrical

secondary school tasks, including the possibility for using resp.

requiring different problem solving strategies and space perception

abilities (cf. pp. 5-6.).

By this test I wanted to figure out what kind of ability my students have and

how they can solve space geometrical problems. By the analysis of their works

I can properly prepare developing lessons of the course. In the following part I

will write about the space perception part of the test and its evaluation.

Theoretical background
We can find several relevant theoretical works about visualization.

These include description of some keywords as visualization, mental image,

spatial ability, visual imagery, etc. which are important to my work as well.

Space perception and imagination and mental representation of

geometry results are complex (to see, to recognize, to manipulate, to describe,

to re-structure, etc.) (brain) activities with help of mathematical knowledge’s,

skills, abilities.

Dreyfus (1991) said that in mathematics education a spatial

visualization is a set of elements related to the generation and use of mental

representations (mental images) of mathematical information. This set of

elements integrating spatial visualization can be divided into three main parts:

mental images, visualization and visualization abilities.
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I consider “visualization” in mathematics as the kind of reasoning

activity based on the use of visual or spatial elements, either mental or physical,

performed to solve problems or prove properties. Visualization is integrated by

four main elements: Mental images, external representations, process of

visualization and abilities of visualization. (Vásárhelyi 2001, 2002; Dreyfus

1991; Presmeg 1968; Yakimaskaya 1991 and Gutierrez 1994)

Mental images are any kind of cognitive representation of

mathematical concept or property by means of visual or spatial elements. They

are the basic objects for spatial visualization and imagination. Some types of

mental images are described by Presmeg (1986): concrete pictorial images,

pattern imagery, memory images of formulae, kinaesthetic imagery and

dynamic imagery.

External representation is any kind of verbal or graphical

representation of concepts or properties including pictures, drawings, diagrams,

etc. that helps to create or transform mental images to the visual reasoning.

Process of visualization is a mental or physical action where mental

images are involved.

Bishop (1989) has found out the necessity of separating knowledge of

the problem’s content and representation of it from the abilities required to

perform successfully in that context. He described two kinds of ability:

- The ability for visual processing (VP), as a process which involves the

ideas of visualization, the translation of abstract relationships and non-

figural data into visual terms, the manipulation and extrapolation of

visual imagery, and transformation of one visual imagery into another.

- The ability for interpreting figural information (IFI), as a process of

reading, analyzing and understanding spatial representations in order

to obtain some data from them.



Berta - Space perception abilities

6

The fourth component of visualization is constituted by the abilities which help

to carry out the previous processes. The learning and improvement of these

abilities is the key in the whole process of spatial visualization (Gutierrez,

1996b, 1996c). Depending on the mathematical problems to be solved and the

images created, students should be able to choose among several visual

abilities. These abilities may have quite different foundations. Del Grande

(1990) compiled these abilities. Some of them are relevant to my research:

A1. Figure – ground perception - the ability to identify a specific figure by

isolating it out of a complex background.

A2. Perceptual constancy - the ability to recognize that some properties of

an object are independent from size; color the ability to texture or position

and to remain unconfused when an object or picture is perceived in

different orientation.

A3. Mental rotation - the ability to produce dynamic mental images and to

visualize a configuration in movement.

A4. Perception of spatial positions - the ability to relate an object, picture,

or mental images to oneself.

A5. Perception of spatial relationships - the ability to relate several

objects, pictures, and/or mental images to each other, or simultaneously to

oneself.

A6. Visual discrimination - the ability to compare several objects, pictures

and/or mental images to identify similarities and differences among them.

Spatial processing ability is the ability needed to fulfill the combined

mental operations required to solve a spatial task. It includes not only the

ability to imagine spatial objects, relationships and transformations and to

develop them visually, but also the ability to solve the tasks using the ability to

encode them into verbal or mixed terms (Gorgorió, 1996, 1998).
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Spatial processing ability includes:

- At least as many different abilities (see before)

- The ability to interpret spatial information

- The ability to communicate spatial information

Description of researched group
In the researched group there were 15 third year university math

student teachers who enrolled the course “demonstration and experimentation

on math lesson”. For them this subject was the first meeting with didactics of

mathematics during their studies at the university. They were rarely at the same

level in geometry – having secondary school level and one semester of

university geometry finished.

Description of the “Space perception part” of the pretest
In the test I prepared 7 different tasks which should measure different

abilities. (After the course we wanted to have a similar posttest again to get

information about the improvement of these abilities). In each task students not

only had to solve them, but they had also to write down the way how they had

solved it. With the help of their descriptions it was easier to analyze their

solutions, and it was very important to see how they could interpret and

communicate spatial information. As prospective teachers it is very important

for their professional life to acquire these abilities, because they should not only

be able to solve tasks like these, but they have also to teach it to their students.

With consciously planed teaching we could improve space perception abilities

and interpretation and communication of it. The difference in people’ skills and

abilities – space perception too – depends not only on their natural born

attributes, characters, but on the whole developing process as well.
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When analysing the students´ solutions, I looked not only at different

abilities, but also if the solution method they used was visual or non visual and

if they looked at the problem globally or partially. I interpreted the solution to

be visual if the student had used visual images as an essential part of the

method of solution and non-visual if the student had used an argument without

relying on visual images while solving the task. The strategy was global, if the

students´ cognitive strategy had focused on the object considered as whole; and

partial when student had focused on some parts of the object.

Task1: Which cube can be fold from the left cube-net? Sign on the net where

you want to make strips for gluing, and which edges belong to each strip.

1 ..........., because..............................................................................................
2. .........., because..............................................................................................
3 ..........., because..............................................................................................
4. .........., because..............................................................................................
5 ..........., because..............................................................................................
6............, because..............................................................................................
7 ..........., because..............................................................................................
8. .........., because..............................................................................................
9 ..........., because..............................................................................................

Which edges belong to each strip?
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Task1 focuses on abilities A2, A4, A5. Student had to make the cube

mentally from the net of the cube (from plane to space) and find out the

different rotation of figures on that side. It was a task where most of the

students (10 of the 15) found out right answers. There were problems with

describing of that solution. Seven students could write an answer for every

cube. When solving this task all of the students had chosen a visual strategy,

they imagined how to fold this cube and after it they checked the figures on the

presented paper and compared with drawn ones. They looked on it just from

sides like they saw at the pictures. Nobody cared about the sides which we

could not see on pictures of the cube. Nobody thought about the figures of

those sides.

Task2: Write numbers at the corresponding edges left and right which make

clear, how to cut the cube if we want to get after cutting the net on the right

side!

To some extent task2. is an opposite task to task1. This task 2 (?)

focuses on abilities A2, A4. We have a cube and out of this the students had to

make a given net. As a help there were given reasons how to start - with



Berta - Space perception abilities

10

numbering of edges. 14 of 15 students used this numbering. One of the students

solved this task by denoting the vertexes. It was interesting how they described

their solutions. Everybody made it correctly, but not everybody could write

down the way of solution. 8 students wrote nothing. Three students out of 7

who described their solution started to write numbers on edges of the cube-net

first and after this they put numbers at the edges of the corresponding cube.

When solving this task they applied the same thinking style and transfer from

plane to space as in task1. In their description of solutions they used non-visual

methods (just numbering and use of letters of the alphabet (nobody wrote that

he or she imagined the process of cutting in their mind) and worked with the

cube as a whole – globally. The solution of this task showed that there had been

a big problem with interpretation.

Task3: We truncate the cube in a way you see in the axonometric

presentation of the cube. Make the net of the truncated cube. Explain your

solution!

Task3 focuses on abilities A1, A2, A4, A5. Students had to imagine

the truncated cube mentally, had to find out these two polyhedrons which we

get after cutting. It was a hard task for them. Just 3 students tried to write down

the way of solution. From their drawings we could see that most of them used
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non-visual methods to solve it. This could also be derived from their written

description of their solution. First they drew a net of the cube, later on they

identified the vertexes of the cube with vertexes on a net and in this was they

could draw the net of truncated cube, too. Now I saw that some students had

problems with the meaning of nets, but 10 drawing out of 15 were correct.

Task4: Draw into the axonometric figure of the cube the section which is

represented on the net. The endpoints of the cutting sections are midpoints

of the sides or vertexes. Explain your solution!

Task4. is an opposite task to task3 (from plane to space). It focuses on

abilities A1, A2, A4, A5. There was nobody who would make it visually, all

students who solved this task gave numbers to vertexes on a net first and after it

identified this numbers with the vertices of a cube and with help of them they

draw cutting sections into the picture of the cube. There were just 3 students

who could write down their solving process. 3 out of 15 students did not try to

solve this task. From 12 solvers there were 4 who made mistakes in identifying

vertices and therefore they did not find the right solution.



Berta - Space perception abilities

12

Task5: Which of these four pictures represent the same solid? Prove your

answer! (by Gorgorió)

A) B)

C) D)

Task5 focuses on abilities A2, A3, A4, A5 and A6. Students had to use

mentally rotation. Most of them found it and tried to do it. Two of them drew

into pictures Cartesian coordinate system for better seeing the way of rotation.

Everybody tried to solve it, they found the good answers but they were not able

to write down there way of solution. Not everybody used rotation in that task.

Some of them divided the solid into unit cube peaces and they counted how

much peaces are in each polyhedron. There were also students who made

mentally rotations and then - for being sure in a right solution - they also

divided these polyhedrons into unit cube peaces. Everybody solved this task

correctly.



Berta - Space perception abilities

13

Task6 focuses on abilities A2, A3, A4, and A6. My main interest in

task was determined by the question whether the students could imagine also

another view on solids 1, 2 and 3 during their solution process. Nobody

described his solution and only two out of 15 students thought also about a

view from the back side. There were 3 students who could not find the solution

for any of the 3 solids.

Task6: Which of the solids 1, 2, 3 can be constructed with help of a, b, c?

Explain it!

b)a) c)

1
2

3
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Task7 focuses on abilities A2, A3, A4, A5 and A6. It was also about

mental rotations of solids and about different views on it. For the solution it

was important to get an overview. Not everybody could make it and imagine

the rotation. Some of them tried to solve it by counting the unit cubes and

comparing the directions of that. Nobody could write down the solution clearly,

just 6 of them tried to write it down. Everybody found the right solution.

Conclusion

Task7: Which of the four solids – presented by figures in the four corners of

the whole drawing - can be moved in such a way that its projection into the

plan corresponds to the picture in the center? Explain your answer!
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We can see from the solution of the students that their ability to

interpret and communicate spatial information is on a very low-level. It is

important to improve more these two abilities by lectures than the other

abilities. It is very important for our student teachers to try to verbally describe

their process of thinking and solving of tasks and problems. It is also very

important to work more with polyhedrons and with different representations of

it (concrete models, pictorial, computer models etc.) to get a more

comprehensive experience in working with them and to get better and correct

mental images. As a second part of my research I prepare with help of this

pretest and pilot study corresponding lectures to help my students to improve

these abilities. In a last phase of this research I want to administer a posttest to

them to see the changes in their abilities. I would like to compare each person’s

pretest and posttest and analyze the change. I experienced that the short and not

disappointing lectures had motivated the students. The students preferred that

subject that helped them to teach. In my pilot study I could observe this

motivation and interest.
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Lars Burman
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Abstract: The demand for more elements of problem solving and higher-

order thinking in mathematics instruction is widely discussed nowadays. This

article suggests three main ways to improve the instruction in mathematics in

secondary schools in order to meet these demands. The three ways are using

questions and inductive reasoning, using problem tasks and using

investigations and modelling projects. Some examples from the author’s

collection of research data in a Finnish secondary school are used to elaborate

the issue.

Demands of improvement for mathematics instruction

Since Polya (Polya, 1945), a strong demand for more elements of

problem solving in mathematics instruction has been growing. It has taken the

form of both large movements and different kinds of statements from individual

researchers. The huge process in the USA leading to Principles and Standards

(NCTM, 2000) is an example of the former kind and Lenni Haapasalos

(Haapasalo, 1995) course book about problem-solving processes is an example

of the latter kind.

Moreover, the development of special conferences in problem solving

in mathematics, ProMath conferences, can be seen as a result of the same

concern among researchers in mathematics didactics.
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Demands for real problem solving and higher-order thinking are

widely discussed and for instance in Proceedings from ProMath in Jena 2003,

Erkki Pehkonen (Pehkonen, 2004) states that problem solving commonly is

accepted as a tool when the aim is to develop thinking skills, Henry Leppäaho

mentions problem-solving strategies (Leppäaho, 2004) and Pál Maus (Maus,

2004) asks for more emphasis on the type of thinking needed in problem

solving in mathematics instruction.

In the ProMath conference in Lahti 2004, Kaye Stacey (Stacey, 2005)

demonstrates that “problem solving has become difficult to pinpoint in the

official descriptions of mathematical curricula in some countries because it has

become a part of a pervasive socio-cultural approach to learning mathematics”.

With examples from the current mainstream approach in English-speaking

countries like Australia, the UK and the USA, she finds a mix of goals for

process aspects. Such goals could be entitled “Using and applying

mathematics” and include problem solving, communication and reasoning (to

choose the UK variant of saying it). Especially, she mentions open problem

solving as a process through which students could learn.

Also in Lahti Günther Graumann (Graumann, 2005) claims that the

aim of the conference is to “strengthen problem orientation in mathematics

education” and suggests that students more often should work with problem

fields of everyday life. He even argues that if roughly one third of the

mathematics education should be spent on mediation and information and

another third should be spent on deepening knowledge in exercises and

applications, then the last third should be reserved for investigations and

working on problems. According to him, working on problems could mean

working as individuals, in pairs or in groups, but sometimes also the whole

class can work together on a problem.
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Ways to improve the instruction in mathematics

What should a common teacher in an ordinary class do to meet these

demands for more elements of problem solving? Moreover, what can be done

when the teacher constantly feels that there is a severe lack of time? As follows,

using some examples from my collection of research data, I am going to

suggest that the answer consists of mainly three kinds of efforts: the use of

questions and inductive reasoning for the teacher and the use of problem tasks

as well as investigations or modelling projects for the students to work with.

Questions and inductive reasoning

When preparing the lessons and later when acting in front of the class,

the teacher needs to be aware of the importance of activities like investigation,

reasoning, making conjectures and testing of hypotheses. No matter what the

topic is, it is probably possible to use one or several of such elements of

problem solving. The teacher can pose challenging questions and use an

inductive kind of reasoning in order to make the students themselves find out

how to proceed in different situations when the teacher is presenting unknown

methods or when the teacher and the students are working together with a task.

The task in the following example has been used in ordinary

secondary-school classes with 15 year old pupils. They have worked with the

task individually without discussion in their classes. Of course, there is also the

possibility of inviting the pupils to work with similar tasks in small groups.

First example

Some variable terms are going through “a procedure” which gives new

variable terms as the result. The results of the procedure in four cases are the

following:
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x6 gives 6x5

x12 gives 12x11

3x7 gives 21x6

5x20 gives 100x19

Decide what happens when the same procedure is applied to the

variable terms x4, 7x5, kxn and the somewhat special variable term 25x.

It is obvious that the pupils learned how to find the derivative but this

was not the point, although a positive interest in coming mathematics arose in

the class. Their challenge was to find the pattern that described a procedure of a

kind they had never heard of or seen in a textbook. In my first test class, all the

pupils managed to get the correct answer in the case kxn, which was a very

good result.

In the actual case, the students only got the message that some of them

most probably will meet the same procedure later on and then make very good

use of it. The same kind of task has also been used when introducing the

concept of derivative in a short course of mathematics in upper-secondary

school and that was done with a considerable success. It then became a source

of motivation for the students and as a result they could perhaps understand

more of the theoretical background and the use of the procedure.

Problem tasks

Problem solving is often practised with tasks, in which a certain

problem-solving strategy is intended to be used and sometimes the tasks may

have a context from the real world outside school. I have also used problem

tasks which invite the students to use heuristic methods and different problem-

solving strategies. If it is possible I use tasks with a real-world context because

then the task is even more valuable and can encourage the students to make
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connections to the real world outside school and help them to apply their

knowledge in mathematics to different kinds of real situations in the future.

The following example was also used in a class with 15 year old

pupils, but this time, the pupils were supposed to work in groups of about four

pupils. The problem was well connected to the actual topic in mathematics

(applications with quadratic equations where square roots are needed) and a

period of cooperative learning, although it was not a task that could be

classified as a good simulation of a real-world task. More about classification

of problem tasks can be found in Palm & Burman (2003).

Second example

A group of maths students was going for a (mathematical) walk in

Lapland. They decided to walk some whole number of kilometres west, then

some whole number of kilometres south and finally, the shortest way to the

starting point. The task is to find the two whole numbers (it may also be the

same number) in order to get a total of 20 km or as near that distance as

possible.

When this task was carried out, it caused nearly half an hour of

intensive work. The groups worked hard to find the best answer and it was also

said that the fastest group to find the best answer would get at least some kind

of honour award. The best answer was also found, but it was possible for the

group to know that it was the best answer only after having tried all the

combinations of two possible numbers. Thus, there were different possibilities

even if the group had the right answer:

- a group could have the right answer without being sure of having it

- a group could have the right answer and also know it
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- a group could have the right answer and also know it but the group did not

need all the time available because of organizing the work in the group very

well

Of course there is also the possibility that a group fails completely,

perhaps as a result of bad organization or as a result of not having the capability

to solve the problem at all. This raises the question of how to form the groups,

but that problem will be left aside in this article.

The next example has been used in several classes with about 16 year

old upper-secondary school students and they were supposed to work

individually.

Third example

The average of seven different positive whole numbers is 23 and the

median is 20. Find the greatest possible number in the set.

This task seems to be very simple but nevertheless, it requires

knowledge of two concepts and a correct conclusion about every single number

involved.

Investigations and modelling projects

The example above can be very good training in problem solving but it

is certainly not the kind of problem that we frequently meet in the real world.

There is a need for practise in working with real-world situations and dealing

with problems related to the real world. Questions and problems from real-

world situations can seldom be solved in one lesson or two. Therefore, we need

another kind of task: for pupils in lower-secondary school they could be called

investigations and for students in upper-secondary school modelling projects.
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However important real -world tasks are, an investigation can also be an

investigation in mathematics without a real-world context.

The next example is an investigation without a real-world context, but

a very basic and useful investigation into mathematics. It has been used as a

model for investigations, at the beginning of the seventh grade with 12-13 year-

old pupils.

Fourth example

Write down all the numbers from 2 up to 100 beneath each other and

then fill in the prime factors of all these numbers like for instance 6 = 2 ∙3, 7 =

7 and 8 = 2 ∙2 ∙2. Try to investigate some strategies that can help you to find

the factors when you are proceeding up to 100.

As this one might be the first investigation made by the pupils, the

teacher and the pupils have often worked together up to 20. Then the pupils can

go on in small groups up to 50 or 80, depending on the time available and the

pupils’ capability. The last part can be done as an individual work or as a work

in groups and then it is important to find strategies for factorizing new

numbers.

One of these rules might be that every even number has the factor 2

and also all the factors of the number we get when the even number is divided

by 2. Another rule might be that every seventh number has the factor 7, every

eleventh number the factor 11 and so on. In one class some pupils even came

up with the question how to know when it is no longer needed to check if a

certain number is a factor in the actual number. As an answer they found what

could be considered a description of a square root, although this concept was

not yet known.
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The final example is taken from upper-secondary school and the actual

group of 18 year-old students had chosen a long course in mathematics, which

means ten courses of about thirty lessons of 45 minutes each in Mathematics.

The example is chosen from the course called Probability and statistics and in

this case the students were supposed to work in groups of about four students.

They could choose a problem area and because of the limited time, the teacher

helped the groups to formulate problems which had a suitable length and a

reasonable connection to the course. The groups should also have different

problems.

Fifth example

In what month are the students in grade 11 at our school born?

This question was raised by some students in the class and accepted by

the teacher to be an interesting and quite suitable question to work with. The

students also immediately had the needed hypothesis ready: throughout the

whole school system those born at the beginning of the year have a kind of

advantage which might give the outcome that the majority of the students in the

upper-secondary school could be born in one of the first six month of the year.

With some help of the teacher, the actual group of students was able to

collect data and compare it to a uniform distribution and then they drew

conclusions from that. The two final steps were to explain the results and

compare them to the hypothesis and thus, to evaluate the model and make a

suggestion how to improve the model. After each step in a modelling project

like this the groups gave the teacher their reports and got feedback. If there is

time, it is of course recommendable for the groups to present their results to the

whole class.



Burman - Three main ways

9

Discussion

We have seen examples of the use of questions/inductive reasoning,

problem tasks and investigations/modelling projects in mathematics instruction.

The setting is a Finnish secondary school and moreover, the author has tested

all the tasks in classes where Swedish-speaking students receive instruction in

Swedish.

The research methods have been action research (first part, lower

classes) and didactical engineering (second part, upper classes).

In the Finnish school system over all and especially in upper-

secondary school, there is a strong feeling that the time given to mathematics is

very restricted (and much more time is given to languages). Accordingly, the

chosen tasks may reflect that the teacher cannot use much time for them, when

there in every course is a time-consuming content, which after three years in

upper-secondary school is tested in a matriculation examination. Nevertheless,

the examples show a desire to take steps in the supposed right direction,

although the steps are small steps. Above all, the article gives hints of what a

teacher can do in order to improve the instruction in mathematics even in a very

time-restricted system.
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Summary
Music offers a lot of opportunities for connections of mathematics and

arts on secondary level. First of all rhythm and notations of classical music provide

exercises for fractions (in grade six or seven) at which we also can deepen

knowledge about music. The analysis of different chords and the sounds of

instruments combined with creating superpositions of sinus-functions then build a

problem field for grade ten or eleven. Also the analysis of number-symbols and

geometrical forms within the notation as well as symmetric patterns in given

compositions or the discussion of structures of modern composition techniques are

problem fields for connecting mathematics and music on higher secondary school

level up to university level. The development of pitches and scales respectively

tunes is another problem field in which the development musical theory from

Pythagoras up to the twelve-tone- technique can be opened up by mathematics.

In my presentation I will schedule such problem fields concerning

mathematics and music and go more into details with the problem field of the

development of our heptatonic scale of tones in Pythagorean, diatonic and well-

tempered tune.

Introduction
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On earlier meetings of the ProMath-Group and also on other conference in

the last five years my focus for problem orientation in respect to mathematical

content was lying on geometry. Last year in Lahti then I concentrated on another

aspect - namely mathematics for everyday life. The aspect of practice orientated

mathematics education as well as application orientating and modelling in

mathematics lessons is in my research interest – so as geometry and didactics of

geometry – already since three decades.

This aspect of using mathematics for outer-mathematical problems I will

widen here by looking on a combination of mathematics with another discipline

respectively different subject at school whereat today I will focus on mathematics

and music.

I did choose this combination because on one hand mathematics and

musical theory have a common basis with Pythagoras as well as influenced each

other. On the other hand music belongs to my interests and both mathematics and

music do fit very well with Hungary as far as I know.

Mathematics and Music – a survey of different problem fields

First of all within the combination of mathematics and music there is the

theme “rhythm”. In music of course rhythm is very fundamental. For example

elementary music education basing on Kodaly (which is practiced not only in

Hungary) starts with different exercises in rhythm. Moreover rhythm is structuring

popular music as well as classical music. But rhythm also is a medium for

structuring in mathematics. From J. Kühnel for example we know that rhythmic

counting is a good way to structure the field of natural numbers. A problem field

combining mathematics and rhythm in music concerns the notation of classical

music and its different measures. Up from grade six we can analyse by counting
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and adding fractions given notations of music or different distributions of notes

within a given measure. As an exercise for example we can let the students make

time lines in notations of a melody without time lines or complete notes or break

sings in incomplete notations. Also we can find out that in music a whole time-unit

not always is equal to a whole number.

A second problem field concerning mathematics and music has to do with

the tuning respectively the definition of intervals of tones. For occidental music the

basis for this is - as already mentioned - with Pythagoras where mathematics,

musical theory and religion have been a whole. I will focus on this theme a little bit

more at the end of my presentation.

Very interesting for students of higher secondary school is the analysis of

sounds as well as of special instruments. With this we can combine working with

trigonometric functions with music as well as physics (especially acoustics). At

first we find out that a periodical oscillation can be modelled with a regular

rotation on a circle where the graph leads us to the sinus function. After that by

analysing overtones of the sound of an instrument we are lead to different super-

positions of sinus-functions. Also we look at the graphs of super-positions for

harmonic or not so harmonics sounds as well as floatings with disharmonic sounds.

If we can get a synthesizer from the music teacher we also can create new sounds

respectively new instruments. Finally we can make a mathematical analysis of the

family of all possible super-positions of sinus functions respectively cosines

functions.

The other way round we can transform different waves known from

physics (for example gravitation waves or electromagnetic waves) into acoustic

waves and represent as sounds. Also the so-called music of planets from J. Kepler

in his “harmony of world” where the ratios of distances respectively time of
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rotations are transformed into tones can be seen as musical representation of a

physical or mathematical phenomenon.

Another field concerning mathematics, music and acoustics has to do with

reflections of different tones in special designed rooms. We for example know

about the good acoustic in ancient arenas. With students of upper secondary

schools we can find out that in an arena with a shape of an ellipse a whistling in

one focus can be heard in the other focus. But also the time difference of a sound

and its resound in different halls with special geometrical shapes we can compute

with students.

Furthermore we find problem fields concerning mathematics and music

by analysing classical compositions with help of numbers, symmetry or geometry.

Numeral symbolic we can find in several compositions of J. S. Bach. A generalized

symmetry we often find in symphonies and very well known are inverted forms of

a melody (changing up-going intervals into down-going intervals of same size and

the other way round, let run the melody reverse as well as combine both) or the

translation of a melody within a canon or fugue. Moreover we can find special

patterns (e. g. a melody going up combined with a melody going down as symbol

for the cross of Jesus Christ). With the composition-program PRESTO you can

analyse and transform compositions with methods which are similar to those of

dynamic geometry software1. PRESTO originally was made for Atari-computers

but with an emulator it runs under Windows. It is based on the finite Galois-field of

71 numbers. Within the 7171 pixel-field you can change between demonstrating

1 See e.g.: Christmann, N. (2005). Dynamische Geometrie und Musik. In: Beiträge zum
Mathematikunterricht 2005 (Proceedings of the 39 th Conference of Didactics of Mathematics 2005 in
Bielefeld), Hildesheim, p. 145-149.
Or see: Leopold, C. & Christmann, N (eds.) 2003, Geometrie, Architektur und Musik, Technische
Universität Kaiserslautern (ISBN 3-936890-18-8).
Compare also: Leopold,, C. (ed.) 2003, Klangansichten – Musik sehen – Geometrie hören, Technische
Universität Kaiserslautern (ISBN 3-936890-19-6)
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the graph of amplitude and time or duration and time or loudness and time of a

melody given in.

Similar to the field just named is the investigation of compositions of

twelve-tone-technique. For example the analysis of different trails within the

twelve-tone-circle can lead to finite cyclic groups and its subgroups. But still the

combinatorical question about the number of all possible twelve-tone-units can be

interesting.

More difficult then is the analysis of other modern music which for

example uses clusters or special wavelets. Also the analysis of computer generated

modern music might be interesting for students of higher secondary school.

There are a lot of other problem fields combining mathematics and music

but because time goes on I now will go into more details about the history of

tuning of our classical music.

Tunings of tone-intervals and scales in occidental music

The oldest well-known interval is the Octave. Presumably it was used

already very early in the history of mankind because men and women normally

sing parallel in Octaves if they sing the same song.

A subdivision of this interval in five steps (called Pentatonic) was used in

many melodies of ancient music. Between 1000 and 500 BC in Egypt a system

with seven steps within an Octave (called Heptatonic) was developed. We have to

presume that Pythagoras became acquainted with this system during his travels to

Egypt. In any case we know that Pythagoras used a subdivision of the octave with

seven steps. This turned into the basis for the whole occidental music.

Pythagoras demonstrated the intervals on the so-called monochord (a

wooden resonance box with one string which can swing in different length). The
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ratios of length he used as description of the intervals. So e.g. the octave is

defined by the ratio 2 : 1 because the length of the string for the Octave is half as

long as the length of the string of the basic tone (the Prime).

If you are looking for piling up Octaves you easily can find out (and hear

at the monochord) that the Octave of an Octave (Double-Octave) is characterised

by the ratio 4 : 1 while the ratio 8 : 1 is belonging to the Triple-Octave, the ratio

16 : 1 to the Quadruple-Octave and so on. With this we find out that the

“addition” of intervals2 corresponds to the multiplication of the ratios and a

“multiplication” of an interval corresponds to a power of the ratio.

As basis of this Pythagorean scale it was used the third overtone with

ratio 3 : 1 respectively its Octave-transposition with ratio 3 : 2 called Fifth or

Quint. By piling up and down this interval (and using Octave-transpositions if

necessary) Pythagoras defined his seven-step-scale of an octave with following

ratios:

Prime (basis)  1 : 1

Second (Tone)  (3 : 2)( 3 : 2) : (2 : 1) = 9 : 8

Pyth. Third  (3 : 2)4 : (4 : 1) = 81 : 64

Quart  (2 : 1) : ( 3 : 2) = 4 : 3

Quint  3 : 2

Pyth. Sixth  (3 : 2)3 : (2 : 1) = 27 : 16

Pyth. Seventh  (3 : 2)5 : (4 : 1) = 243 : 128

Octave  2 : 1.

2 We mostly see musical intervals as straight lines which can be added. This e.g. is obvious with the
keyboard of a piano or an organ.
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As difference between one interval and the next one we easily can find by

computing division of fractions the whole Tone (Second) 3 with ratio 9:8 and the

so-called Half-Tone 4 with ratio 256 : 243.

Because the ratios of the Pythagorean Third, Sixth and Seventh as well as

of the Half-Tone are not so simple as the others already in the first century BC

there was introduced by Didymos a new tuning with only little changes which later

on was called “diatonic or harmonic scale”. Sometimes it is also used the name

“pure tuning”. Didymos used for the Third instead of 81:64 the ratio 80:64 which

equals 5 : 4. As consequence we then get a bigger and a smaller Second as well as

changes for the Sixth, Seventh and the Half-Tone5.

With Pythagoras the Third could be seen as addition of two Seconds

(Tones)6. But because the diatonic Third is a little bit smaller as the Pythagorean

Third the difference between the Third and the Second is also a little bit smaller

than the normal Second (Tone). This so-called Reduced Second has also a “good”7

ratio, namely 10 : 9 (because of 5/4 : 9/8 = 10/9). The diatonic Sixth with ratio 5 :

3 then can be seen as addition of a Quint and a Reduced Tone (3/2 10/9) as well

as addition of a Quart and a Third (4/3 5/4) and the diatonic Seventh with ratio 15

: 8 can be seen as addition of Quint and Third (3/2 5/4) as well addition of a

Sixth and a Second (5/3 9/8). The scale of the diatonic tuning therefore is the

following:

3 E.g. as difference between Quint and Quart corresponding to (3:2):(4:3) = 9:8.
4 E.g. as difference between Quart and Third corresponding to (4:3):(81:64) = 256:243.
5 This is a very good little problem field for students in grade six or higher grade practicing the
computation of fractions.
6 Because 9/8 9/8 = 81:64
7 In the ancient Greek mathematics (besides the so-called multiple ratios of the form n:1) the ratios of
the form (n+1):n with natural numbers n have to be seen as special ratios.
The investigation of different ratios of the form n:1, (n+1):n ,(n+2):n, (n+3):n and its connections, sums,
differences, products and quotients as well as their presentation as musical intervals can build a little
problem field too.
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Prime (basis)  1 : 1

Reduced Tone (Reduced Second)  10 : 9

Tone (normal Second)  9 : 8

Third  5 : 4

Quart  4 : 3

Quint  3 : 2

Sixth  5 : 3

Seventh  15 : 8

Octave  2 : 1.

As difference between one interval and the next one we now have the

whole Tone with ration 9:8 and the reduced whole Tone with ratio 10:9 as well as

the (diatonic) Half-Tone with ratio 16 : 15 which still is a “good” ratio and arises

as difference between Third and Quart ([4:3] : [5:4]) as well as between Octave

and Seventh ([2:1] : [15:8]).

As difference between one interval and any other one within an octave we

get besides the seven normal diatonic intervals (named above) some more new

Intervals (respectively ratios)8. Here we only want to mention the so-called Little-

Third with ratio 6 : 5. It is defined as addition of Tone and Half-Tone (or

difference of Octave and Sixth) because (9 : 8) (16 : 15) = (2 : 1) : (5 : 3) = 6 : 5.

This ratio today is very important in the minor tune (Moll-tune)9.

8 Finding out all such different intervals is another very good little problem field.
9 In the ancient Greek theory of music besides the normal scale there were used scales which did not
start with the basic tone (Prime) but with any other tone within the heptatonic scale (by using the
following tones of the heptatonic scale as well as Octave-transpositions of them) so that the sequence of
steps is instead of “Tone+Tone+Half-Tone + Tone + Tone+Tone+Half-Tone” is a different one. Today
we only use the sequence of steps called minor tune with the following sequence “Tone+Half-
Tone+Tone + Tone + Half-Tone+Tone+Tone”.
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You properly can imagine that working in this problem field there can be

found a lot of more questions which concern multiplications, divisions and powers

of fractions. Knowing that the ratios of the frequencies of special tones10

correspond with the above ratios of the intervals we also can compute the

frequencies of all tones in a special range.

In the Middle Ages (about 1000 AD) when organs first were built and the

keys of them had to be fixed in respect to exact frequencies the seven steps of an

Octave were fixed stating with the Tone named C. But because also scales starting

not only with C were used between the fundamental keys there were installed the

so-called black keys11, five within one Octave so that the Octave was nearly cut

into twelve Half-tones. With this five different scales nearly tuned in the diatonic

way music could be played in five different heights. But all other scales did have a

bad tuning.

So the question came out to divide the octave exactly into twelve equal

intervals. This problem was solved first towards 1700 but it became well-know not

until the middle of the 18th century when in mathematics the handling with

irrational roots became usual because the “Division” of an Octave into twelve

equal parts corresponds to the 12th root of 2. The scale basing on this interval is

called a scale with “well-tempered” tuning. For it we have the following intervals

Prime  1

Second  ( 12 2 )2 = 6 2 1,1225 [Compare: Pyth./diatonic Second = 9:8 =

1,1250]

10 In the end of the 19th century the frequency of the tones have been fixed so that the so-called
chamber-tone “a” has the frequency of 440 Hertz.
11 E.g. if you start with „f“ then you have a normal Second to “g” and a reduced Second to “a”. The next
step then is not a Half-Tone but a whole Tone. So we have to install a new (black) key between these
two (white) keys. Today this new key is called “b flat” (in English) or just “b” (in German whereat the
following white key has the name “h”).
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Third  ( 12 2 )4 = 3 2 1,2599 [Pyth. Third 1,2656, diat. Third = 5:4 =

1,2500]

Quart  ( 12 2 )51,3348 [Pyth./diatonic Quart = 4:3 1,3333]

Quint  ( 12 2 )71,4983 [Pyth./diatonic Quint = 3:2 = 1,5000]

Sixth  ( 12 2 )91,6818 [Pyth. Sixth = 1,6875, diat. Sixth = 5:3 

1,6667]

Seventh  ( 12 2 )11 1,8877 [Pyth. Seventh  1,8984, diat. Seventh =

1,8750]

Octave  2.

As far as I know J. S. Bach was the first composer who used the

possibility of walking through different scales in his work named “well-tempered

piano”. With it he spread out the interest about the well-tempered tuning among the

musicians.

The new possibility of “walking” from one scale to any other one of the

twelve possible scales then extensive was used by composers of the Romantic in

the 19th century and in the beginning of the 20th century. Finally in the 1920 th

Arnold Schönberg developed the so-called “twelve-tone-technique” in which the

basis of composing is a row of all twelve Half-Tones of an Octave.

Let me end with the hint that since the 19th century in musical theory for

the notation of the interval-numbers it is used a logarithmic scale with the so-called

unit “Cent”. Because (as we have seen) the addition of intervals corresponds to the

multiplication of the interval-numbers in this way the “addition” of intervals

corresponds to the addition of the logarithms. And having not to small numbers the

logarithm of an interval-number was multiplied with 1200 so that the “Cent”-value

of a well-tempered Half-Tone equals to 100 (therefore the name “Cent”). Working

with this scale we get a lot of opportunities for deepening the logarithm as well as

musical theory.
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Abstract: As we are trying to find an effective way of creating sequenced

problems for developing students’ problem-solving skills, we examine given

problem sequences. In this paper we present some results of these examinations

through the example, below. We have examined the connections between the

problems and the changes of cognitive aims and strategies within the sequence.

With the help of these examinations we formulate a hypothesis for general

requirements of the sequenced problems and we raise a few questions for

further investigation.

About sequenced problems

As Schoenfeld says: “Carefully sequenced problems can introduce

students to new subject matter, and provide a context for discussions of subject

matter techniques ... problem solving is not usually seen as a goal in itself, but

solving problems is seen as facilitating the achievement of other goals.” [8, p.

12.] In the application of problem solving in teaching mathematics we often

use some kind of series of problems instead of lonely tasks. In these series of

problems, there are close connection between the problems, but the kind of

connections can be very different, even in a certain group. There can be the

same problems with changed conditions, like in problem fields [4], or a group

can be formed by analogous problems [3].
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Very often a series of problems is built up in a way that the solutions

of the problems should help to solve the other problems; these groups of

problems are called sequenced problems.

Sequenced problems can be used for building up mathematical

concepts, theorems and proofs, but now we examine sequenced problems as

suitable instruments for increasing the weak students’ problem solving

achievement. If a math teacher would like (would like helyett elég liked) to

improve the students’ problem-solving skills in this way, then she/he must be

able to create effective problem sequences by using those tasks given in the

problem books. Therefore, giving some general requirements of effective

sequenced problems is an important task for the researchers of didactics of

mathematics.

Of course, effectiveness of a way of teaching is always a subjective

thing, but there are some necessary conditions of being powerful, that we try to

demonstrate through an example. In addition we suggest a method, which can

be used to check if a certain sequence of problems fulfils these conditions or

not.

The problems in the following example are given in the original order

as they were taken from a problem book [2, p.3. problem 2073- 2077]. The

sequenced problems should be given to the students in a fixed order, which is

determined by the connections between the problems, and the changes of the

cognitive aims and strategies.

The connections between the problems

There are more possible goals of using the given problem-sequence.

For example, they can make the students be familiar with vectors or represent a
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possible way of thinking in proving the equation in Problem 4. An implicit, but

very important goal can be to stress using previous results in solving the

problems. The first three problems are those, where the students can practise

basic operations with vectors, but these operations are necessary to get the

solutions of the other problems, so by giving these tasks to students teachers

can reach more than one goals at the same time.

By having a closer look at the problems and examining them

according to Bloom’s cognitive levels (knowledge, understanding, application,

analysis, synthesis, evaluation), we can observe the connections between the

problems. In the next part we summarize the concrete cognitive activities for

the certain problems:

Problem 1.(2073)Let there a regular hexagon be given with its side and

diagonal vectors. Find vectors with the same length, but

different direction and vectors with the same direction

but different length!

Knowledge: features of the regular hexagon, the concept of the vector

(length, direction).

Understanding: groups have to be created from the vectors in the hexagon from

two different aspects.

Application: features of the regular hexagon (equal segments, known

angles).

Analysis: examining and comparing the vectors in the hexagon from the

aspects of length and direction.

Synthesis: making groups of the vectors, and examining the groups.
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Evaluation: examining the differences in the certain groups (if the direction

is the same, what is the connection between the lengths and

vice versa), looking for those vectors, which are in the same

group from both of the aspects (equal vectors).

Problem 2.(2074)a. There are a, and b vectors pointing from the midpoint

of a regular hexagon to two neighbour vertexes of the

hexagon. Express the side and diagonal vectors of the

hexagon with a, and b vectors!

b. There are a, and b vectors pointing from a vertex of a

regular hexagon to the neighbour vertexes. Express the

side and diagonal vectors of the hexagon with a, and b

vectors!

Knowledge: features of the regular hexagon, vector-operations (addition and

subtraction using the parallelogram-method).

Understanding: the side and diagonal vectors can be expressed with the given

vectors.

Application: results of Problem 1. (equal vectors, 1:2 ratio of certain

lengths), parallelogram-method.

Analysis: comparing the certain vectors to the given vectors, looking for

those vectors that can be expressed easily.

Synthesis: comparing all of the vectors to those that are already expressed.

Evaluation: checking whether we have expressed all vector, examining the

vectors according to Problem 1.
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Problem 3.(2075) In the regular hexagon ABCDEF there are a= AB


, and

b= AF


vectors given. Let the midpoints of the sides CD

and EF be P and Q. Express , andAD AC PQ
 

vectors

with a, and b vectors!

Knowledge: vector-operations (addition, subtraction, multiplication with a

scalar), vector pointing to the midpoint of a segment, vector

pointing from a given point to another, results of Problem 2.b.

Understanding: , andAD AC PQ
 

vectors can be expressed with the given

vectors (like in Problem 2.b.).

Application: results of Problem 2.b, vector pointing to the midpoint of a

segment.

Analysis: expressing ,AP AQ


vectors in triangles ACD and AEF.

Synthesis: expressing PQ


with AP


and AQ


.

Evaluation: by comparing the result with the results of Problem 2.b, another

method can be realized, because we can see that 3
4

PQ CF
 

.

Problem 4.(2076) Draw the regular hexagon ABCDEF and show that:

2AB AC AE AF AD   
    

!

Knowledge: vector-operations, concept of equal vectors, features of the

regular hexagon, the results of Problem 2.

Understanding: the vectors are equal if their length and direction is the same or

if they can be expressed with other vectors in the same way.

Application: substituting the results of Problem 2.

Analysis: expressing the certain vectors with a and b vectors.

Synthesis: comparing the two sides of the equality.
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Evaluation: by examining the AB AF
 

and AC AE
 

sums we can find

an other way of thinking

Problem 5.(2077)a. Draw the regular hexagon ABCDEF and its midpoint,

O! Determine the sum of , and OEOA OC
 

vectors!

Knowledge: vector-operations, the results of Problem 2, the concept of zero

vector.

Understanding: we are looking for a vector, which is equal to the sum of the

given vectors.

Application: we can use the results of Problem 2.

Analysis: expressing the certain vectors.

Synthesis: examining the sum of the vectors.

Evaluation: we can recognize the equilateral triangle ACE, so the problem

can be observed from other points of view.

Problem 5.(2077)b. Draw the ABCDEF regular hexagon and its midpoint,

O! Determine the difference of ,AB ED


vectors!

Knowledge: vector-operations, the results of Problem 1, the concept of zero

vector.

Understanding: we are looking for a vector that is equal to the difference of the

given vectors.

Application: we can use the results of Problem 1.

Analysis: examining andAB ED
 

vectors according to Problem 1.

Synthesis: recognizing that andAB ED
 

vectors are in the same class

from both of the aspects of Problem 1. (equal vectors).
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Evaluation: we can find more pairs of vectors for which the difference is

zero vector.

Problem 5.(2077)c. Draw the ABCDEF regular hexagon and its midpoint,

O! Find four vectors in the figure for which the sum of

the vectors is zero vector!

Knowledge: vector-operations, the results of Problem 1, the concept of zero

vector.

Understanding: we are looking for vectors, for which the sum is zero vector, as

in Problem 5.a.

Application: we can use the results of Problem 1, and Problem 5.b.

Analysis: finding pairs of vectors, like in Problem 5.b.
Synthesis: finding rectangles in the figure, like rectangle ABDE.

Evaluation: comparing more of the solutions.

If one has analyzed the sequenced problems in this way, then it is

well-observable, that the solution of a problem can be used for solving the next

problems. After we have solved Problem 2, then it is easy to solve Problem 4.

and Problem 5.a, by only substituting the right expressions of the given vectors.

By solving Problem 1, we examine all of the vectors in the hexagon so we can

find equal vectors, even if it is not the task, and this implicit help makes the

next problems to be easier. In the next oriented graph we have represented

these connections.
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1.

5.a.

2.a. 2.b.

5.c.

5.b. 4.

3.

By examining the number of the edges in the graph, we can state that

Problem 1 has the most edges starting from the problem (we can state that there

are the most edges starting from Problem 1). This is the basic problem of the

sequence. The solution of this problem helps solve most of the other problems,

so this problem has to be easy to solve even for the weak students. With help of

the graph of connections we can discover critical problems; if we would left

them, the connected graph would disintegrate into parts. In the given example

this is Problem 2.b. We have to be aware of those sequenced problems, which

contain critical problems, because if the students are failed with them, then they

probably will not be able to solve the others (Problem 3.). Usually, the selected

problems can be solved in other ways, without help of the previous solutions,

but the weak students often give up work in the situations we have mentioned.

If there are no critical problems in the sequence, then students can go further

even if they had failed to solve a certain problem. A required condition of not

to have these kind of problems in the sequence is, that not only the neighbour

problems should be connected!
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We have chosen this example, because it is right for presenting the

mentioned conditions for effective sequenced problems:

 Not only the neighbour problems should be connected.

 The basic problem(s) should be selected carefully.

 There should not be critical problems in the sequence.

By examining the problems according to Bruner’s cognitive levels we

can make the graph of connections for the sequence and by observing the graph

we can decide if a sequence of problems fulfils the conditions or not.

Open questions

In the analysis of the given problem-sequence we focused on the

connections between the problems from the aspect of developing the weak

students’ problem solving skills. What about those students, who are talented in

mathematics? The mentioned example contains such problems that can be

solved without using the solutions of the previous problems in the sequence.

Although the most obvious problem solving method in this sequence is

reducing, I am sure, that in a classroom there would be more ways of thinking.

In Problem 3. for example, PQ


vector can be determined by using the side

vectors, we have expressed before, or one can say, that PQ


vector is the

arithmetical average of side vector DE


and diagonal vectorCF


. Problem 4.

and Problem 5. can also be solved without using the previous results, for

example, one can say for Problem 5.a, that , andOA OC OE
 

vectors are the

rotated side vectors of triangle ACE multiplied by 2/3, so their sum is 0. As we

could see before, one can get to the mentioned alternate solution for Problem 3.

by looking back to the results of Problem 2.b, but there is no such help for the

alternate solution of Problem 5.a. in the previous tasks. A disadvantage of using
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sequenced problems is that the talented students can be hindered in divergent

thinking by the striking connections between the problems.

Another important question is about the force of these connections.

How could we know whether the problems, that we have found connected,

would be also connected in the students’ mind? How could we classify these

connections? I think if we could find the answers of these questions, then the

conditions of powerful sequenced problems will be more clarified.
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Abstract: Teaching is complex. And often requested problem oriented

mathematics instruction is even more complex than traditional instruction.

From that special demands on the teacher and because of that on teacher educa-

tion arise. At least teacher education at university should include attempts to

sensitize becoming teachers for the complexity of (problem oriented) mathe-

matics instruction first. For development and testing of new complementing

elements of education, there has to be constructed a diagnostic instrument and

to be elaborated more precisely, what is meant by sensitivity for complexity.

First results will be given in this article.

Theoretical Framework
“Teaching is acting and deciding in a complex system.” This is said very often,

it is written very often in popular as well as in specialized educational, psycho-

logical and didactic literature.1 But what does it actually mean? Whereby prob-

lem oriented mathematics instruction (POMI) is more complex than traditional

instruction? First I want to approach possible answers by a paradigmatic exam-

ple: the use of a fascinating folding paper-problem in a math lesson.

1 For references see e.g. Fritzlar (2004a).
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The Faltproblem (folding paper-problem): A sheet of usual rectangular typing

paper is halved by folding it parallel to the shorter edge. The resulting double

sheet can be halved again by folding parallel to the shorter edge and so on.

After n foldings the corners of the resulting stack of paper sheets are cut off. By

opening the paper, it will be seen that (for n>1) a mat with holes has arised.

Find out and explain a connection between the number n of fold-cut-operations

and the number A(n) of holes.2

In almost 50 lessons in different grades and school types the Faltproblem

showed its special potentials for problem orientation, but special characteristics

of POMI and resulting demands on the teacher have appeared too. Here I can

outline only one situation, which can occur during a lesson about the Faltprob-

lem:3

As an introduction into the problem the teacher possibly wants to work on some

fold-cut-operations together with his students. These first steps can be varied in

many details. The figure shows some possibilities for variations and probably

influenced characteristics of students’ problem solving processes . The arrows

can only hint at the multitude of connections, additionally influenced by special

characteristics of the situation and involved persons.

2 This problem was developed by KARL KIEßWETTER (e.g. KIEßWETTER &
NOLTE 1996) to use in an entrance examination of the University of Hamburg.
3 More examples can be found in FRITZLAR (2004c).
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I hope this simplifying figure stimulates to further considerations, so

that the reader realizes the richness of only this individual situation and the

many connections between conditions of and decisions during the lesson, fea-

tures of the lesson course, side and long term effects. Additionally in such

situations the teacher usually has to decide under time pressure. And it is im-

possible for him (maybe it is impossible in general) to know all influencing

factors and to consider them in an appropriate way.

Before reunfolding the
paper the students could be
asked for their presump-
tions (about the number of
holes or the papers’ ap-
pearance).

There could be used one
paper sheet for all opera-
tions or a new sheet for
every fold-cut-operation.

Results could be recorded
in a table, in sketches or in
another way.

The work could begin with
one or two halvings of the
paper sheet.

Organization of results

Number and kind of
students’ presumptions

Used materials

Judgement of informa-
tion

Perseverance and
motivation

Going on from rou-
tines

Characteristics of the respective situation
and the involved persons
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Generally teaching can be characterized by the following features and resulting

demands which are typical for complex systems:4

There is absolutely no doubt that teaching is complex in this sense, but

beyond this POMI is characterized by an additional high complexity concern-

ing math-cognitive aspects: During a lesson many al least partly different prob-

lem solving processes of students appear simultaneously and go very quickly,

which should be watched and supported by the teacher if necessary. These

processes are influenced by numerous anthropogenic and socio-cultural condi-

tions and especially by (sometimes inconspicuous) teaching-decisions in many

ways. So unexpected matters occur very often and the teacher must react in

only few seconds. On these occasions he has possibly to free himself of or at

least question own views.

4 Therefore they will be described for any complex system in general.

Comprehensiveness: high quantity
of information to be considered for an
appropriate work in the system

… must try to reduce comprehen-
siveness in an appropriate way

Connectivity: change of system
elements on account of modifica-
tion of other elements

Dynamic: system elements change
without intervention from outside; the
system does not wait for the agent

Intransparency : states of the system,
system elements and connections
between them cannot be observed

… often feels time pressure; he has
not only to consider the present state,
but its development in time too

… cannot do one thing without many
others; he has to consider side and
long term effects of his decisions too

… has to complement his knowledge
through active information gathering

The agent …
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And POMI is very low transparent because the teacher cannot look

into pupils’ minds, that’s why their problem solving processes are often diffi-

cult to understand. In addition the teacher is no longer the only (and authoritar-

ian) source of information and he has to give his students more scope for doing

mathematics (FRITZLAR 2004b).

Conclusions and goals of research
From the described complexity of POMI on the one hand and the goal of a

stronger problem orientation of math education on the other hand, special de-

mands on teacher education arise, which are not fulfilled up to now. Also the

first part of teacher education at university ought to be complemented in an

appropriate way. At least we should try to sensitize teacher students for the

complexity of POMI. In this context I designate – as a preliminary approach – a

teacher, a teacher student or more generally an agent as sensitive, if he is aware

of the complexity of POMI, of special demands arising from it and of limits of

his possibilities to decide and to act in an appropriate way. (A more detailed

operationalization is only possible by consideration of the respective context.)

But for this purpose of sensitization there has to be done basic works first. In

particular a diagnostic environment has to be created, which enables us to get

information about the teacher students’ initial situation and to evaluate possible

complementing elements of education. But how and in which situations can

you notice sensitivity for complexity? How can an appropriate diagnostic in-

strument look like?

Research work
It seems to be clear that sensitivity for complexity appears above all in analyz-

ing and evaluating of decision situations connected to POMI. First of all you
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might think of real situations as most suitable for obtaining hints for an agent’s

degree of sensitivity, but these would cause some disadvantages, e.g.:

 It seems important to me to take into account, that sensitivity does not

mean successfully coping with complex situations. It rather means an ap-

propriate subjective modelling which could be hardly scrutinized within

real situations.

 Real situations are unrepeatable and hardly to vary systematically.

 In real situations the agent normally has to act under time pressure and his

decisions are also influenced by his ability to realize these decisions

(“pressure of performance”).

That’s why I decided to develop an artificial diagnostic instrument consisting of

two parts.

First part: an interactive computer scenario. I analyzed the videotaped lessons

about the Faltproblem particularly in regard to features of students’ problem

solving processes and connections between them, conditions of the lesson and

teaching decisions during the lesson. The data were joined to a realistic interac-

tive scenario which enables a user to work on the modelled network. In the role

of the teacher the user can work on special teaching situations and for instance

test different decisions or same decisions under different conditions; upon the

computer program reacts and brings the next decision situation to him. At the

end the user gets an assessment of his decisions in regard to his own goals for

the lesson. The next figure shows the realization of the decision situation de-

scribed above and the main structure of the scenario.
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selection of a class ←
statistical data, students’ abilities, experiences concerning

problem solving, collaborative working, ...

selection / prioritization of lesson goals ↔
short-term goals (regarding the Faltproblem),

long-term goals (regarding heuristic competences, attitudes, ...)

teaching decisions ↔
presentation of the problem, questions and instructions to the students,

used materials and media, ...
Given alternatives can be selected or supplemented.

reactions by computer regarding lesson situations, ↔
students’ problem solving processes and results
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students’ activities, presumptions, argumentations, (approximate) assessment

concerning students’ motivation, involvement, …

assessment of teaching decisions

comparison between achieved and planned goals, assessments concerning

consistence of decisions, extent of control by the teacher,

comprehensiveness of mathematical doing, ... →

I see at least the following potentials of the computer scenario:

 A scenario allows a satisfactory complex modeling with concentrating on

very important but often more or less ignored math-cognitive aspects.

Through the program’s interactivity a complex network of decision situa-

tions arise for the user, which is comparable to real teaching.

 Unlike reality decision situations can be explored repeatedly (as often as

the user want) and without time pressure. In addition it is unimportant for

the user, if he is able to execute his plans.5 Altogether a scenario can

model decision situations realistically, and it enables ways to analyze

these situations, which do not exist in reality but whose use can provide

some hints for the degree of sensitivity.

 Modelled situations can be varied systematically. By this the user can

experience complexity of teaching in a special way and the teacher educa-

tor can analyze his examination of this complexity.

 As many students as wanted can work with the scenario, and it can be

handled in an easy way.

5 This could be important in particular for teaching novices.
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Second part: an interview. I developed a special interview concerning

the use of the Faltproblem in a math lesson. In the course of the interview the

subject works on few situations, in which he has to decide about the further

lesson course, he has to judge suggested decisions or to interpret problem solv-

ing processes and results of students. With this interview further relevant in-

formation about the degree of sensitivity are to be obtained by compensating

observed disadvantages of the computer scenario. In particular I see the follow-

ing complementing potentials of the interview in this regard:

 The subject will be explicitly asked to develop (appropriate) variants and

alternatives. (In the scenario the user can also give additional alternatives,

but in my empirical studies this feature was hardly used.)

 Considerations of the subject (interpretations of described situations, rea-

sons and goals of decisions, …) can be recorded in detail. (In the scenario

the user is also asked to verbalize, but the extent of comments varied very

much in my investigations. By the multitude of situations to be worked on

this is just a matter of energy and stress too.)

The following figure shows the realization of the previously described

entrance situation in the interview:6

In a math teaching experiment the Faltproblem is supposed to be dealt with in

the class 5a.7

How could the first steps of dealing with the problem

be engineered? Give some different variants!

6 Questions and requests on the subject are type written.
7 Information about the class is offered as in the scenario.



Fritzlar - What does it mean to be sensitive

10

A teacher student has planned first steps as following: The pupils and the

teacher work together on the first fold-cut-operations. After folding and cutting

the paper the pupils are always asked for their presumptions (before unfolding

the sheet of paper).

How do you judge this decision of the teacher stu-

dent?

How could details of this start in dealing with the

Faltproblem be designed and varied? Give some differ-

ent variants!

Among other things the following variants are possible:

- Before unfolding the paper the pupils are asked for their presumptions

regarding to the number of holes or regarding to the appearance of the

unfolded sheet of paper.

- The work on the Faltproblem starts with the first or with the second fold-

ing.

- The work on the Faltproblem starts with the first or with the second fold-

ing.

- All fold-cut-operations are carried out at one sheet of paper or the pupils

get another sheet of paper for every fold-cut-operation.

Please name some possible effects and possible advan-

tages and disadvantages of these variants!

How would you engineer the first steps in the class

5a? Please, give some reasons for your decisions!

Results and discussion
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The diagnostic instrument was applied in a first empirical study with

twenty teacher students from five universities in Germany.8 Up to now I was

able to analyze data of subjects’ working on the computer scenario in detail.

But what does it mean to be sensitive for the complexity of POMI in this spe-

cial situation? Since this field of research is new, worldwide there hardly exist

experiences about it and so my investigation can “only” be a pilot study, it

seems appropriate to derive criteria for the degree of sensitivity not only from

theoretical considerations but from gained data too.

Certainly sensitivity for complexity (sfc) is a complex quantity itself

which cannot be characterized by an only number. Grounded on gained data

about the working on the computer scenario I developed a four-dimensional

vector, which describes the user’s degree of sensitivity. The following table

shows a short description of these components and, in italics, main results of

my pilot study; for more details I have to refer to FRITZLAR (2004a):

Exploratory behavior:

representing quantitative and quali-

tative aspects of the user’s explora-

tion of the scenario.9

In general students explored the sce-

nario only to a small extent; possibili-

ties for systematic testing of teaching-

decisions also on different conditions

were hardly used.
Context sensitivity:

8 I want to thank for their support Prof. Dr. Regina Möller (University of Erfurt), Prof. Dr.
Marianne Nolte (University of Hamburg), Prof. Dr. Günter Graumann (University of Bielefeld ),
Prof. Dr. Friedhelm Käpnick (now University of Münster) and Prof. Dr. Bernd Zimmermann (Uni-
versity of Jena).
9 e.g. number of loops and jumps back within the program and number of different modes of repre-
sentation the problem
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representing to what extent the user

referred in decision-situations to

problem solving processes of stu-

dents, aspects of the mathematical

content, or more social aspects (mo-

tivation, teaching methods, …) of

the lesson.

Many users realized that the scenario

focuses on math-cognitive aspects of

POMI. Anyway features of students’

problem solving processes were con-

sidered only superficially and to a very

small extent.

Inconsistence:

representing the percentage of the

user’s decisions, which are inter-

preted to be not consistent with

modelled aspects of the lesson (in

particular with features of students’

problem solving processes).

This component varied very much.

Because of the small extent of explora-

tion it was not always possible to ob-

tain a result.

Reflectivity:

representing the extent of (critical)

reflection (e.g. of quality of model-

ling by a computer program, of own

decisions and decision behavior, …).

Reflectivity was low in general. Users

hardly reflected on connections be-

tween conditions of and decisions dur-

ing the lesson and students’ problem

solving processes.10 Multidimensional-

ity of decisions was rarely taken into

account; meta-cognition was hardly

perceptible.

There are no objections against the independence of the components of the sfc-

vector.

I could not find specific sensitivity types in the experimental group.

10 Also from there arose only few motives for exploration.
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The analysis of data obtained by interviewing the subjects (second part

of the diagnostic instrument) could not be completed yet. Theoretical consid-

erations e.g. about the psychological approach of “cognitive complexity”

(MANDL & HUBER 1978) and first impressions from obtained data indicate, that

in particular the structure of argumentation might be an important criterion for

sfc. Among other things in this connection you can distinguish differentiated

vs. absolute judgement and conditional vs. absolute deciding of the subject.

I hope I am able to present more results in a few months and proceed-

ing from them to characterize the degree of sensitivity for complexity still more

precisely.
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Abstract: In this article we will be concerned with the heuristics of solving a

mathematical contest problem. We will discuss a problem of the XIV-th

International Hungarian Mathematical Contest (Miskolc, Hungary, 2005). We

are analyzing the written solutions of Problem 5 (grade 9) based on the works

of the 59 contestants. The main aims of our investigations were: to identify the

applied solutions, the strategies, the misconceptions of the contestants and to

draw some conclusions for the fostering of talented students.

The XIV-th International Hungarian Mathematical Contest
This year in Hungary there was organized the XIV-th International

Hungarian Mathematical Contest for grades 9-12. Each grade has its own

problem series, which consists of 6 problems. The contestants get 10 points for

the first solution of a problem and 2 points more for the second solution or for a

generalization. The minimum of points is 1 point.

The fundamental goals of these competitions are to awaken interest in

mathematics and to develop talents. A contest problem illustrates in a miniature

the process of creative mathematics. A good problem tells us a story of

mathematical creativity and beliefs. Therefore it is very important to deal with

the mathematical contest problems and analyze the pupils’ heuristically

solutions, their strategies or tactics and the ways of their thinking. We can use

these experiences in teaching of talented pupils for the next contests.
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The other reason for examining the works of the competitors is to

improve posing and formulating the problems of the competitions in the future.

The proposed problems are always hard and require mathematical knowledge,

experience and mathematical skill, sharp and quick thinking and good

computing competence.

We, I and a young teacher, corrected and evaluated the solution of

Problem 5 given to pupils of grade 9. We chose a geometrical problem, a

problem of Euclidean plane-geometry. We knew that geometry is hard for the

best pupils too. Why? I think that it needs more heuristics and using both halves

of our brains. Mathematical knowledge is not enough. The pupils are not

accustomed to heuristical methods, and many of them do not like to sketch

figures. It is important to learn more about strategies for problem solving, to

sketch methods for the competitors. During the competition the pupils were

many times within an ace of solving the problem, but they did not see and

could not find the missing step.

Problem 5 (grade 9)
Let ABCD be a trapezium. The length of the diagonals AC, resp. BD is 9 and

12. These diagonals are perpendicular to each other and |AB|∙|CD| = 50.

Consider the value of the sum: |AB|2 + |BC|2 +|CD|2 +|DA|2 .

Problem 5 as a geometrical problem was based on well-known school-

material. It was complex and its solution was like a labyrinth. One had to go

step by step, but there were a lot of similar and different steps. It was not easy

to find the right way. We could come to an impasse. It is not easy to find the

best solution of a problem, or to generalize it during the competition. The best

solutions come often later, after the competition, when there is a time to discuss

the problem among the competitors and tutors. This is a good method for

preparing the talented pupils to the next competitions.
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Results
We corrected the works of 59 pupils: Hungary (21), Romania (15),

Serbia (8), Slovakia (13), Ukraine (2). 7 pupils (11,86%) gave correct solutions,

5 pupils (8,47%) gave almost correct solutions, 3 pupils (6,78%), tried to

understand the problem and began solving it, they had partly result, 44 pupils

(75,8%) had no result, they made some starting steps, drew figures, made

notations, and wrote the data. Only the best pupils of grade 9 were successful in

solving Problem 5, or we can formulate our statement inversely too: those

pupils were the winners who could solve the Problem 5, so it became a dividing

line. (Fig.1)
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How are thinking the contestants?
If we look at the work of the contestants in solving Problem 5, we can

see typical characteristics. The decisive step in the solution of geometrical

problems may be to make a figure and to introduce appropriate auxiliary lines.

It was very important when the pupils recognized some familiar feature in the

given geometrical figure (trapezium, right angled triangles), or in computing

they may recognize a complete square. There are well-known theorems for the

trapezium (midline, area, similarity), for right angled triangles (Pythagorean

Theorem, height theorem). When they want to apply the Pythagorean Theorem

for the perpendicular diagonals they have to translate one of them to get a right

angled triangle. It was possible to apply the Pythagorean Theorem to four right

angled triangles. Some of them noticed that certain lines formed a pair of

similar triangles.

In this paper we will be concerned with the heuristics of solving a

mathematical contest problem, namely the Problem 5, based on 59 students’

work. We shall discuss different problem solving strategies and analyze their

typical tactics, results, beliefs and missing steps.

Analysing the solutions from the point of view of applied
strategies
1. The use of general theorems
Problem 5 was a special case of Euler’s theorem.

Euler’s theorem

If M, resp. N are midpoints of the diagonals AC, resp. BD of a quadrilateral

ABCD, then |AB|2 +|BC|2 + |CD|2 + |DA|2 = |AC|2 +|BD|2 + 4 |MN|2 .

In our case quadrilateral ABCD was a trapezium, so |MN| = 1
2

| |AB| -|DC| |.
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In Hungary the Euler’s theorem is not a well-known theorem, and its

knowledge is not expected even from the best pupils.

Cases
 Contestant 915 (he was the winner) knew Euler’s theorem and applied

it in the given special case. He gave a generalization too. The

generalization is easy; it goes in the same way as the concrete case.

(Fig.2.)

 The problem poser proved directly the special case of Euler’s

theorem.

Fig. 2
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 The knowledge of the Pythagorean Theorem was not sufficient by

itself. Applying the Pythagorean Theorem was connected with other

methods (symmetry, translation, area of trapezium, similarity, theorem

of parallel intersecting lines, recognizing of a complete square).

 Contestant 937 gave a complete, right solution. He was applying the

theorem of Thales (theorem of intersecting parallel lines) and

Pythagorean Theorem. He gets that |AO| = 4/3| BO|, OC = 4/3| DO|

(O is the intersecting point of the diagonals). He squares |AB|∙|CD| =

50 and used that |AB|2 = |AO|2+ |OB|2 , |CD| 2 = |DO|2 + |OC|2. From

these follows that |BO|∙|OD|=18. He computed the value of the term

|AO|∙|OC|+|BO|∙|OD|, applying the Pythagorean Theorem four times

and he got the result.

2. Analytic geometry
I observed that on contest level some pupils choose the method of

analytic geometry for solving plane-geometrical problems. In our case two

students chose this method. They placed in a special situation the given figure

in the Descartes coordinate-system and very elegantly solved the problem.

Cases
Student 64 placed the trapezium in the coordinate-system so that the two

diagonals were joining the x-axis and the y-axis.

 Student 78 used a false belief, he constructed a rectangular trapezium.

3. Geometrical transformations: translations and similarity
There are some common ideas and characteristic methods in classical

plane geometry. If we deal with a trapezium we have to know that the

translation of its sides or diagonals is a very useful tool. The above mentioned

moments are part of a greater chain of thought and form the first useful step

forwards the solution.
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Cases
 A lot of the contestants chose for the first step of the solution the

translation of the perpendicular diagonals and formed a right angled

triangle, where the lengths of the legs were 9 and 12. With the help of

the Pythagorean Theorem they considered the length of its

hypotenuse. They got that |AB| +| CD| = 15. It was given that

|AB|∙|CD| =50. From the quadratic equation x2 – 15 x + 50 = 0 they

got |AB| = 10, |CD| = 5.

 In carrying out the solution the second step of the problem solvers was

different. They followed many helpful strategies:

1. Similarity of ABM and DCM triangles (M was the intersection point of

the diagonals) and applied the Pythagorean Theorem (contestants

63,907,962)

2. They computed the area and the height of the trapezium ABCD, and

applied the Pythagorean Theorem (contestants 927, 947, 959).

3. They applied sometimes Pythagorean Theorem (960).

 The solution of student 67 is based on similarity of the ABM and the

DCM triangles. He used special notations: AM=k∙AC, CM=(1-k)∙AC,

BM = k∙DM = (1-k)∙BD, k 1;0 . Squaring the condition AB∙CD = 50,

he got the 9k2+9k+2 = 0 quadratic equation with the roots k1= 1/3, k2

=2/3, and from this immediately the value of the requested square sum.

There were other tactics too:

 Contestant 916 has put AM=x, DM=y, so x:(12-x)=(9-y):y, x=12-4/3 y.

He solved the quadratic equation 25 y2 -225 y + 450 = 0, got y1=3, y2=6

and could compute the value of the requested square sum.

 There was a better notation too: DM = x, CM = y. In this case y = 4/3 x.

Contestants 911, 914, 925, 961, 964, 68, 78 made this choice, but they
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could not end the solution. The main reason was that they made mistakes

in solving of quadratic equation, or in the algebraic transformations.

4. Exploitation of Symmetry Principle
It was possible to solve Problem 5 with exploitation of Symmetry Principle.

This method was the shortest. In our case |AB|2+ |CD|2 = |DA|2+ |BC|2, so

|AB|2+|BC|2+|CD|2 + |DA|2= 2(|AB|2+ |CD|2).

Cases
 Student 66 gave such a kind of solution. In the first step she denoted

with x, 12-x, y, 9-y the two parts of the diagonals, then wrote the sum

of the squares |AB|2+|BC|2+|CD|2+|DA|2 and used the method of

completing the square. Her method was general, only in the last step

put she the data in the terms.

 The method of the contestant 65 was a combination of translation,

algebraic method (completing a square) and symmetry principle.

(Fig.3)

Fig. 3

 Contestant 934 was absent-minded. He had forgotten to write the

given relation |AB|∙|CD| = 50. He found the algebraic symmetry, but

he could not reach the solution in consequence of the missing value.
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He was within an ace of solving the problem, but he did not find the

missing step.

5. Working backwards and forwards
I met with a special combination of the methods backwards and

forwards. This was the tunnel building method. The contestants began the proof

from two directions, from backwards and forwards too. They hoped that the

two tunnels will meet punctually, or there will be only a little gap in the

connection of their statements, arguments. This strategy was successful.

Case
 We found the tunnel building method in the work of the contestant

923. In the middle of the proof there was a gap. He found that |AB|2 +

|CD|2 = 125, but he did not see the symmetry. So he tried to compute

some proportions exploiting the similarity of the triangles ABM and

BCM.

6. Circular reasoning
In solving Problem 5 it was important to apply many times the

Pythagorean Theorem. Without conception this method did not lead to the

solution, may be that the contestants got a more complicated term, or they went

back to an identity.

Cases
 Some contestants wrote the Pythagorean Theorem to the triangles

AMD, ABM, BMC, DMC and they carried out the squaring of the

terms, but they could not make a progress. The form of the term would

be more complicated.

 The other tactic was to compose the sum of squares

|AB|2 + |BC|2 +| CD|2 + |DA|2,
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but the contestant 910 could not find the value of |AM|∙|MC|+|BM|∙

|MD|, therefore he tried to do something with the help of similarity

and he got a more complicated term.

 Contestant 909 wrote a lot of connections, but at last got an identity.

Problems of incomplete solutions, mistakes and false trials
7. Problems of choosing notations, problems of drawing
figures
With Problem 5 there was not given the figure of trapezium ABCD. The first

problem was: How can we draw the trapezium, and how can we denote the

vertices of the trapezium?

The formulation of a problem needs knowing conventions. On the International

Hungarian Mathematical Competitions the mother language is common

(Hungarian), but the school-system, the curricula and mathematical

conventions are different.

Cases
 For two contestants (65, 67) the absence of a figure for the trapezium

caused a problem. They examined two versions:

1. Usual case: |AB| > |DC|, AB|| DC.

This version was chosen by the other contestants, it is the only possible

case.

2. Other case: |AD| < |BC|, BC || AD. This case was not possible.

As we mentioned one of the first step in solving Problem 5 was to make a

figure. It was not easy to draw a trapezium with perpendicular diagonals. Some

contestants at first drew the diagonals and later the parallel sides.

 6 contestants (946, 950, 954, 85, 86, 87) made only the figure of the

trapezium, gave the notations and wrote the data.
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 Some pupils drew special quadrilaterals: symmetrical trapezium,

parallelogram, rhombus, or kite.

8. False beliefs, trial and error method
Problem 5 had a special character. The pupils could make some hypotheses and

with their help, without statements and arguments, based on drawings and

measuring on a figure, they easily could compute the correct result.

Cases
 Contestant 953 supposed that |AB|=10, |CD =5. In this case the ratio

of the sections of the diagonals was 2:1. From these quantities he

computed the values of |AM|, |CM|, |DM| and |BM|.

 I found in 12 works a false belief. The contestants supposed that they

are searching the result in the domain of the positive integers. They

made the prime factorization of 50 and decomposed it into two factors.

From the pairs, they chose the convenient (10; 5) pair, and supposed

that |AB|=10, |CD|=5. From these follows the correct result 250.

 Contestant 924 assumed from the figure, without arguments, that

|BM|=4, |MD|=9, |MA|=3.

 There were other contestants too, who assumed that the diagonals of

the trapezium divide each other in ratio 2:1. It was true, but they gave

no arguments. This way they got the right result (919, 941, 951).

 Contestant 908 wrote: |AB|2+|BC|2+|CD|2+|DA|2=450-4(|AM|∙|MC|

+ |MD|∙|MB)|=450-4∙|AB|∙|CD| = 450 -200 = 250. The result and the

statements are good, but there were no arguments.

 There is an interesting trial in the work of contestant 913. He got the

equation:     50912
2222  baba .Then he wrote that the

solutions of this equation are a=4, b=3, because 503664916  .
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 Contestant 902 assumed that a2 = 82 +62  a = 10, b2 = 62 + 42

 b = 52 , c2 = 42 + 32  c = 5, d2 = 82 + 32  d = 73 , so

he got that a2 + b2 + c2 + d2 = 250.

9. False interpretations
The cause of false interpretation is that the pupils do not remember

punctually the definitions and the theorems. They suppose such facts which are

not true, use such data which are not given.

Cases
 Contestant 917 used the height theorem of right angled triangles for

the triangles DCB and ABD, but these triangles were not right angled.

 Contestants 916, 929 and 926 badly remembered certain theorems.

 Contestants 936 and 916 supposed the principle of symmetry where

there was no symmetry (|MA| ∙|MC| = |MB|∙|MD|).

 Contestant 944 thought that the median of the trapezium was going

through the intersection point of the diagonals.

Conclusions
In geometry it is very useful to know and apply a lot of theorems; sometimes

the contest problems are special cases of some, less known theorems. The

decisive step in the solving of geometrical problems may be to make a figure

and to introduce appropriate auxiliary lines. Generally it is necessary to give the

figure with notations in formulating of a problem. The analytic geometry is

helpful to describe a problem pictorially. A figure usually makes it easier to

assimilate the relevant data and to notice relationships and dependences. The

introduction of a coordinate system helps to solve a geometrical problem by the

way of algebra, helps to compute the values. The tunnel method is an attempt to

solve the problem when the student is an ace of solution of a problem. The

presence of algebraic symmetry in a problem usually provides a mean for
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reducing the amount of work in arriving at a solution. It is obvious that without

conception contestants could not complete the solution of a problem. If they try

to do some routine procedure it is not sufficient for the success. Students made

a false interpretation when they were absent-minded, when their knowledge

was not sure. They used false relations if something was wrong in their

thinking (recognizing, remembering, regrouping, supplementing). It was a very

frequent false belief of the contestants that they have to solve algebraic

problems in the domain of positive integers.

I was surprised that all of the right solutions of Problem 5 were different. The

more experienced problem solvers had their own way to approach to the

solution. If we apply the principle of learning problem solving through solving

problems with the help of the best pupils’ solutions for training the contestants,

it would be more effective and more vivid than a tutor’s interpretation. We

found that the cooperative learning completes efficiently the competitive

learning of the contestants.
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Abstract: Traditional mathematics education in Hungary follows the Pólya-

model. Hungarian textbooks teach students using this method and professors of

mathematics education analyse its applications. So it seemed to be evident for

me to use it to examine mistakes in problem-solving. Besides the concepts of

Pólya, I use the ideas of a Hungarian psychologist in our paper. I try to

connect these concepts in order to describe mistakes in mathematical problem-

solving. I hope that combining the two theories I can give a guidance to

Hungarian mathematics teachers that they can easily use in their everyday

work. At the end of the article there is a short description of another

application of this idea.

1. Definitions

The notions of problem and task in psychology differ from each other.

The latter notion means a more general concept. The situation is similar in the

theory of mathematics education. “A task is said to be a problem if its solution

requires a person to combine data previously known in a way that is new (to

him). If he can immediately recognize the measures that are needed to complete

the task, it is a routine task (or a standard task or an exercise) for him.”

Psychology words this very similarly: “The characteristic of a problem is that

we have to reach a goal, namely the solution, which is unknown when the

question is posed.” The word problem has another meaning, too.
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A psychologist can use it to denote a critical situation or a mistake.

The only instance when I use this meaning of the word is in the first word of

the title.

By the word thinking I mean problem-solving thinking, which is the

act of deducing new connections from the known data of the problem. The

reason for this usage is that I use only this kind of thinking in my examination.

What I call problem-solving is not the activity, but the thinking process that

leads to the final result of the problem. In my point of view mistakes are wrong

results which come from wrong thinking steps.

2. Problems in Hungarian mathematics education

There are great traditions of dealing with gifted children in Hungary.

Many mathematics competitions are organized and two mathematics

periodicals (ABACUS, KÖMAL) are issued for students from the age of 8

(year 3) to the age of 18 (year 12). For this reason the best students of Hungary

in mathematics get good results at the International Mathematics Olympiads.

But the average level of Hungarian mathematics education is not as

reassuring. The Hungarian survey MONITOR showed that the difference

between schools has been increasing for decades. The international survey

PISA confirmed the fact that there are huge differences between the best and

worst schools. (The difference among Hungarian students in their reading

comprehension skills and mathematical skills is 71 %. The same ratio of

students of the OECD-countries is only 36 %.) As the good students in

mathematics are among the best in the world, a Hungarian teacher can increase

the efficiency of education by dealing with less talented students more

successfully.
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It is clear that unsuccessful students are characterized by wrong

problem-solving procedures. Therefore my aim is to devise a system that

describes mistakes by categorising. If teachers were aware of the kind of

mistakes their students’ made, they could easily eliminate them. My goal is the

examination of mistakes in problem-solving. For this reason I will survey the

history of Hungarian theories concerning the mathematical mistakes of

students.

3. Research of mathematical mistakes in Hungary

Teachers must have been aware of the importance of mistakes for

hundreds of years. They could discover that certain mistakes of certain students

could repeat year by year. But scholars described this phenomenon only at the

end of the 19 th century.

Beke Manó wrote about his experience in 1900. According to him

every mathematical mistake can be traced back to false or thoughtless analogy.

Szenes Adolf examined mistakes in using the four rules of arithmetic.

He claimed that these were the results of students’ attention being low, or

focusing on something else.

Szeliánszky Ferenc highlighted some factors as the origin of mistakes.

Such are misunderstanding, lack of knowledge, copying, cheating and so on.

Faragó László found in an experiment that the cause of mistakes is the

violation of fundamental principles in education.

According to Mosonyi Kálmán the reason of mistakes can be wrong

analogy, formalism, custom, unclear notions, deficient preliminary knowledge

and terminology of mathematics.

Majoros Mária observed the use of symbols in the work of her

students. She used the mathematical language of her students to trace mistakes
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in their thinking. Theories sketched above do not categorize mistakes on the

basis of problem-solving procedures. Hence I need a different theory.

4. A psychological theory of problem-solving

I will survey the theory of Pólya first, since I would like to compare it

to a suitable psychological theory. (The reasons to start from Pólya’s theory are

(i) every Hungarian teacher of mathematics know it; (ii) it is the only theory of

problem-solving that appears in textbooks.) According to Pólya, the process of

problem-solving in mathematics consists of the following four steps.

P1. Understanding the problem;

P2. Devising a plan;

P3. Carrying out the plan;

P4. Looking back.

Unfortunately, this division is not detailed sufficiently, so I cannot use

it to study every small phase of the process of problem-solving. I use a related

psychological idea to complete this theory. According to a Hungarian

psychologist, Lénárd Ferenc, thinking consists of processes taking place on two

different levels, the macrostructure and the microstructure. The phases of

thinking mean steps relating to the whole thinking process. The construction of

the macrostructure includes the following phases of thinking:

L1. fact-finding; L2. modification of the problem; L3. suggesting a way to

solve the problem L4. criticism; L5. making irrelevant observations; L6.

wonder, delight; L7. annoyance; L8. scepticism; L9. giving up.

I found, when I finished a teaching experiment, in which the participant

teachers were using computers for mathematics problem-solving, that in the

process of problem-solving there are only 3 steps. First, I will briefly discuss

some of Lénárd’s and Pólya’s phases.
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L2.: According to Pólya, one of the most important ways of devising a plan is

looking for a related, more general, more special or an analogous problem, that

is, modification of the problem. Hence I consider this phase as part of devising

a plan and suggesting a way to solve the problem.

L5.: Making irrelevant observations shows mistakes in suggesting a way to

solve the problem. But this step was not typical in the examined school-

environment.

L6.-L8.: Considering the affective categories would be interesting for a

psychologist. I do not want to measure these, since these are not interesting for

me. (Some psychologists – and I – do not consider these factors as thinking

steps, either.)

L9.: When students do not finish solving the problem, then the case is giving

up. This can be traced back to a mistake in problem-solving, so in our opinion I

cannot consider this step a separate thinking step.

P3.: The operation carrying out the plan of Pólya does not appear in the system

of Lénárd. This is because it does not qualify as thinking, but is a rather

manipulative process. (Schoenfeld does not include carrying out the plan in the

steps of problem-solving, either.)

I could find out a fact in connection with the remaining statements,

that because of the similarities I can consider the following stages to be the

same: L1. and P1., L3. and P2., L4. and P4.. So I denote them by 1., 2. and 3.

Since Lénárd’s system has a richer structure, I use Lénárd’s terms. So the

number 1. means L1., 2. means L3. and 3. means L4.

Lénárd supposed that the steps of thinking are influenced not only by

the whole thinking process, but by the small surroundings of the individual

steps, the parts of the so-called microstructure, as well. Hence Lénárd

describes the following operations in thinking:
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A) analysis; B) synthesis; C) abstraction; D) comparison; E) comparing

abstract data; F) understanding relations; G) completion; H)

generalization; I) concretization; J) ordering; K) analogy.

According to my experience six operations in thinking are enough. I

will make some simplifications in order to have a disjoint system.

C): Abstraction emphasizes a property of a whole, which cannot be considered

as an independent unit. I consider abstraction a special part of analysis.

D)-E): Comparison and comparing abstract data can be considered part of

understanding relations. So I can omit these operations.

H)-I): As Lénárd considered generalization and concretization as cases of

completion, I omit the last two operations.

I consider the six remaining operations of thinking, – analysis,

synthesis, understanding relations, completion, ordering and analogy and mark

them with lower case letters in alphabetical order. Thus a) stands for A), b) for

B), c) for F), d) for G), e) for J) and f) for K).

Thus I can organize experiments in connection with the process of

problem-solving. This fact shows that my method can describe the process of

problem-solving. The system can be represented by the following table.

a)

analysis

b)

synthesis

c) understanding

relations

d)

completion

e)

ordering

f)

analogy

1. fact-finding

2. suggesting a way to

solve the problem

3. criticism
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5. Brief evaluation of the experiment

I started an experiment concerning mistakes in 1995. In this

experiment I examined mistakes in mathematical problem-solving. I reviewed

1274 incorrect solutions of algebraic problems, and found 1509 mistakes. (My

reason to examine algebraic mistakes was that they can be recognized easily. I

believe that this fact does not influence my result.) I succeeded in placing all

the mistakes in my system. This shows that my idea is applicable under school-

conditions. I examined solutions written for school exercises in the first place

and I very rarely completed my procedure by oral questioning – only if it was

necessary.

A method suitable for categorizing mistakes should satisfy the

following requirements: (1) each mistake should fit into a category in an

unambiguous way; (2) categorizing should be a fairly automatic process due to

easily recognisable features of the categories. I will present some typical

mistakes from the exercises. (I will show only one example for each type.)

I. Examination of the macrostructure

1. Probably it is an example of incorrect fact-finding when somebody believes

that lg 2 is a rational number. A student can find both rational and irrational

values in the log-tables. Many students do not know which is rational among

these. They find 0,301 for lg 2, and they might think that 0,301 = 301
1000 and

therefore lg 2 is a rational number. (The reason for this mistake may be that in

Hungarian schools we only prove the irrationality of 2 .)

2. The majority of mistakes originate from suggesting an incorrect way to solve

the problem. Many students are surprised the fact that the next multiplication
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(ab) · c = ac · bc is not correct. (I find this type of mistake if the teachers of the

participant students do not emphasize the learning of different rules.)

3. It is worth making the students accustomed to always check their work. But

checking can be wrong, too. When a student compared values of 2 and 3 3

then he worked correctly and got a good result
11
322 3 . In the checking he

claimed that the result is good because any power of 3 is greater than any

power of 2.

II. Examination of the microstructure

a) Sometimes students decompose data incorrectly during analysis. For

instance, they interpret 2 x not as x + x, but as 2 and x. Hence they get that 2 x –

– x = 2.

b) When they do incorrect synthesis, students find false or useless connections.

For example, the product (x – y)(x3 + x2y + xy2 + y3) is not an appropriate form

of x4 – y4 when they want to simplify the fraction 4 4

x y
x y


 .

c) An error in understanding relations occurs when students connect two

notions incorrectly. For example, many students think that x is always greater

than – x. They explain it by the fact that a positive number is greater than a

negative one.

d) Completion means getting the final result using the given data and the full

knowledge of relations. I show some wrong examples in the topic of identities:

xm xn = xmn, (xm)n = xm+n, (xy)n = xn + yn and (xm)n = xmn
.

e) Ordering is an operation which chooses the suitable things from the group of

data, notions, connections. Everyone can see that at the sorting of polynomial

2 x3 + 3 x2 + 4 y = 5 x5 + 4 y

a student made a serious mistake.
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f) Analogy can be used for solving a problem which is similar to one already

solved. Once students had to solve an equation in which the expression
2 2lg 5 lg 3 occurred. Students tried to transform it similarly to the well-known

expression lg lgx y . So their result was
2 5lg

3 .

In his experiment Lénárd analysed 3426 thinking steps of 135 reports.

(He observed university-students’ reply after he had showed them a heavy and

mysterious but not mathematical problem.) I mentioned that my system differs

from Lénárd’s. But in spite of the differences it is worth comparing the two

findigs. (The left columns show Lénárd’s data.)
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The above diagram presents many interesting facts. I will present two

of them.

(i) The low ratio of mistakes in fact-finding can be a consequence of the fact

that the problems themselves did not require a considerable amount of the

operation.
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(ii) Every mathematics teachers of Hungary can recognize the fact that the

Hungarian mathematics curricula do not consider criticism as an important

thing. For example this step is not compulsory after the realizing algebraic

transformations.

The following chart shows results about the microstructure.

a

b

c

d

e

f

Unfortunately Lénárd did not write down his values concerning his

operations in thinking, so I could not compare results his and my observations.

I think that it could be explained with the Lénárd’s not disjunct model of the

microstructure. Everybody could see from this chart that the completion is the

most important thinking operation. It refers to a bad teaching method in

Hungary.

After this I will consider the two levels of thinking concurrently. The

following table shows the detailed results after categorising each mistake

accordingly.
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a)

analysis

b)

synthesis

c)

understanding

relations

d)

completion

e) putting things

and relations in

order

f)

analogy

1. fact-finding 31 27 24 12 31 11

2. suggestion for

problem-solving
92 32 20 933 17 160

3. criticism 23 26 22 39 9 –

Analysing of this table is interesting mainly from the point of view of

school-practise. But now the only fact what is important for me that my model

is suitable and applicable in Hungarian education.

6. Discussion

(1) I think that it would be important to categorize the typical mistakes of all

school-topics. It would be very useful for teachers who could eliminate

mistakes more easily with the help of the list. (Unfortunately the detailed

analysis of the surveys MONITOR and PISA are inaccessible for teachers and

experts of educational institutes.)

(2) I have mentioned that the Pólya-system is too general for application in

schools. However, it can be very well used in the theory of mathematical

problem-solving because of the facilitative questions that illuminate the

structure of problem-solving. Still, Schoenfeld and others showed that this

system cannot be considered final. For instance, computer-aided mathematics

teaching can raise pedagogical questions that Pólya could not have thought of.

With the help of knowledge about problem-solving every Hungarian teachers

can easily find problems for their students that correspond to the phases of
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problem-solving. I can improve the applicability of the original theory with

these supplements.

The decreasing success of mathematics teaching requires every expert

to search for effective teaching methods. Perhaps the analysis of mistakes will

not be the most important thing that can turn back the unfavourable processes.

But I hope that this paper helps to draw attention to this neglected area that has

been in great need for development for years.
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Abstract: Teachers’ questions and pupils’ responses form an essential part of a

lesson in school. Especially in the use of open-ended problems, communication

between the teacher and his pupils is in a key position. Mathematics is not about

getting answers, but about developing pupils’ insight into relationships and

structures. While the role of communication in classroom cannot be

overemphasized it has to be noticed that the level of teachers’ listening matters.

Here we will develop a hierarchic structure to classify teachers’ listening.

Introduction
The purpose of school education in each country is, more or less, to

develop independent, self-initiative, critical thinking, motivated and many-sided

skilled individuals who will manage in societal settings which they will encounter

later on in their life. Therefore, the key question is what kind of school instruction

is optimal for this goal.

Conventional school teaching has been accused that it considers the action

and the context where learning happens totally different and neutral concerning the

topic to be learned. However, psychological studies show that learning is strongly

situation-connected (e.g. Brown & al. 1989, Collins & al. 1989, Bereiter 1990).

Furthermore, recent psychological research (Bereiter & Scardamalia 1996) has

confirmed the hypotheses set e.g. by Anderson (1980) that learning of facts and

procedures happens through different mechanisms.
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This points out that in instruction there should be offered to pupils

different methods to learn, on one hand conceptual knowledge (as facts), and on

the other hand procedural knowledge (as using facts). Conventional school

teaching suits very well for learning of facts, whereas learning of procedural

knowledge demands pupils’ self-initiated active studying. One possible solution for

the latter case is offered by open learning environments, since within them one can

deal with real, existing problems, be active and learn in natural settings. Since

learning happens then by investigating and looking for solutions of problems, such

an active studying is explained to lead to better understanding of key principles and

concepts. Active learning puts pupils into a realistic and contextual problem

solving environment, and thus can combine the phenomena of the real life and the

class room (Blumenfeld & al. 1991).

AN OPPORTUNITY FOR CHANGE: USE OF OPEN-ENDED
PROBLEMS

When looking for a new teaching method that might confront the

challenges set by constructivism, the so-called open approach has been developed

in the 1970’s in Japan (e.g. Becker & Shimada 1997, Nohda 2000). Internationally

it is accepted that open-ended problems form a useful tool when developing

mathematics teaching in school in such a way that emphasizes understanding and

creativity (e.g. Nohda 1991, Silver 1993, Stacey 1995, Rehlich & Zimmermann

2004). Papers from a larger group of international specialists are collected and

published in a report (Pehkonen 1997).

What are Open-ended Problems?
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Tasks are said to be open, if their starting or goal situation is not exactly

given (cf. Pehkonen 1995). Pupils are given freedom in solving the task, which in

practice means that they may end with different, but equally right solutions,

depending on their additional selections and emphasis done during their solution

processes. Therefore, open tasks have usually several right answers. When using

open tasks in mathematics teaching, pupils have an opportunity to act like a

creative mathematician (cf. Brown 1997). Open-ended problems are such open

tasks that can be counted as problems. For more on open-ended problems see e.g.

Pehkonen (2004).

Several types of problems are collected under the title ”open problems”

(cf. Pehkonen 1995): investigations (a starting point is given), problem posing (or

problem finding or problem formulating), real-life situations (they have their roots

in the everyday life), projects (larger study entities, requiring independent work),

problem fields (or problem sequences or problem domains; a collection of

contextually connected problems), problems without a question, and problem

variations (”what-if”-method). Several examples of different types of open

problems can be found e.g. in the published papers of Nohda (1991), Stacey

(1995), Silver (1995), Schupp (2002), Rehlich & Zimmermann (2004) and in the

edited collection of Pehkonen (1997).

Problem fields may be described as structured investigations. One key

characteristic of problem fields is that they are not bound to a fixed class grade, but

are suitable for mathematics teaching from primary level to teacher in-service

education. The role of the easier problems in problem fields is especially to

reinforce the problem solving persistence of pupils. The most important aspect of

all in these problems is the way in which they are introduced to a class: The

problem field ought to be given gradually to pupils, and the continuation should be
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related to the pupils’ solutions. Instead of the answers and results, the process of

problem solving is of paramount importance. The most important aspect is the use

of pupils' own creative power. Thus, the direction and scope to which the teacher

expands a problem field, depends on the pupils’ answers. See more on the use of

problem fields e.g. in Pehkonen (2001).

Use of open problems
When using open problems in the class, the teacher should let pupils

enough time and mulling ground. One way might be to split a problem into pieces,

and to deal only with one piece at the end of one lesson. And the rest can be left to

pupils as a home work. Thus pupils have enough time to think on the problem and

to discuss together, if needed, on its solutions.

In order to use open problems in the class, there is a demand for teachers

to change their teaching style. If we use the language Schroeder & Lester (1989),

we might say that today most of teachers teach something about problem solving.

But the teaching philosophy of open problems means that they should teach via

problem solving.

THEORETICAL BACKGROUND

Teachers’ questions and pupils’ responses are essential parts of a lesson in

school. Traditionally, it is thought that a pupil’s answer shows explicitly what

he/she knows. This has led to the situation that pupils expect the teacher to look for

a correct answer that they expect to be in their teacher’s mind. The constructivist

idea, however, emphasizes that it is the teacher’s task to help pupils in constructing

their knowledge and understanding of concepts and mathematical thinking (cf.

Davis & al. 1990).
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Social-cultural research has emphasized studies on classroom discourse

(e.g. Hufferd-Ackles & al. 2004). The main goal of talking mathematics in

classroom is to understand and extend one’s own thinking as well as the thinking

of others. When the teacher wants to pay attention to his/her pupils’ understanding

and thinking process he/she has to listen carefully and interpretatively to the pupils.

Our aim is to concentrate on communication in mathematics teaching, and

especially on teachers’ listening skills. One basic demand for genuine exchange of

ideas is that the participants are listening with understanding to each other.

Therefore, we decided to study how mathematics teachers actually listen to their

pupils.

Teachers’ listening
When using discussion as a teaching method, teachers are not always

listening carefully what their pupils are saying, but having their own presentation

in the first place in their mind (cf. Pehkonen & Ejersbo 2004). This phenomenon is

also known from earlier research in the form of teachers neglecting to use such

answers that do not fit into their instructional plans (e.g. Perkkilä 2003).

Listening has been in the center of communication research more than

fifty years (cf. Stewart 1983, Burley-Allen 1995), but in mathematics education it

has a shorter history. Today one may find some studies on communication in

mathematics with the focus on listening, among them: Davis (1997) reported a

collaborative research project with a middle school mathematics teacher, and gave

some examples how the teacher listens. He described the teacher’s evaluative

listening, interpretative listening and hermeneutic listening in mathematic lessons

in eight-grade class. Furthermore, Coles (2001) has analyzed one teacher’s

mathematics lessons, using Davis’ (1997) levels of listening. His observation was
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that both the teacher’s and his pupils’ listening developed with such teaching

strategies that slowed down situations in the class, and offered room for

discussions.

Peressini & Knuth (1998) made a thorough analysis of a teacher’s

discourse in his high-school mathematics classroom and of an educator’s discourse

in a university mathematics education classroom. The researchers were impressed

how the teacher strived to listen to his pupils and to make sense of what they were

saying and the thinking that grounded their mathematical discourse. Nicol (1999)

explored prospective teachers’ learning to teach mathematics. She analyzed during

mathematics lessons how elementary student teachers asked questions, how and

what they listened and how they responded to pupils’ answers. As a consequence,

she points out teachers’ difficulties, challenges and tensions in listening while

teaching.

EMPIRICAL STUDY

We are starting a new research project the aim of which is to find out on

which level teachers in the Finnish comprehensive school (grades 1–9) listen to

their pupils’ answers during mathematics lessons. In order to find interesting

research questions and to develop analysis methods for our further results, we

carried out this pilot study. Especially we try to develop a proper taxonomy for the

levels of listening.

In the pilot study we have looked through some videotaped mathematics

lessons from different Finnish teachers at grade five and eight, in order to find out

how they listen to their pupils during normal mathematics classes. On the basis of

the literature, i.a. Stewart (1983), Burley-Allen (1995), Davis (1997), and applying
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our own experiences as teachers and teacher educators we formed the following

classification structure that contained five levels of listening from a pupil’s point of

view: 1) Not listening, 2) Listening selectively, 3) Evaluative listening, 4)

Interpretative listening, 5) Empathic listening (cf. Pehkonen & Ahtee 2004).

For an observer, it is not easy to interpret the levels of teachers’ listening,

since thinking happens in teachers’ mind. Selective listening means that the teacher

listens a part of a pupil’s answer, but not all. Evaluative listening contains the

teacher’s evaluation on the correctness of a pupil’s answer, i.e. its compatibility to

the teacher’s “correct” answer. In interpretative listening the teacher strives to

understand a pupil’s answer in his/her own framework, i.e. as a mathematics

teacher, and to interpret it in a positive spirit.

Empathic listening differs from interpretative listening in that now the

teacher tries to understand and value a pupil’s ideas, although they might be

strange and new to the teacher. Then the pupil and the teacher try to understand the

topic from a new view point. Empathic listening has been critized impossible to

implement (e.g. Stewart 1983), since then the listener should be able to switch-off

his/her own feelings and thinking. Therefore, we have decided to call the highest

level in the classification structure as open listening.

RESULTS

We looked the videotapes first alone, and then the lessons were

transcribed. After that we picked up together some typical episodes on two-way

communication. First we classified the episodes separately, and after that discussed

together long enough so that we ended with the classification shown here. In the

following we present with the aid of some episodes on which level teachers are



Pehkonen-Ahtee - Levels of teachers' listening

8

listening to their pupils. However, during the classification we noticed that the

classification structure is too rough, and therefore, we use sub-classes in some

cases.

Description of listening levels
In the following, the levels of listening with their sub-classes are

described more carefully, and they will be used later to analyze the communication

episodes given. The hierarchy of listening levels is based on teachers’ level of

awareness and thinking. We have tried to describe the levels of listening so exactly

that also other persons could apply the classification structure and reach similar

results.

1. Not listening
A teacher’s non-listening is surely typical in almost all lessons. The

teacher often ignores what he/she hears, because he/she wants to proceed with the

topic, and because a pupil’s question or comment may lead to a side-track for a

long time. Or he/she may have in his/her mind an idea he/she wants immediately to

present to pupils, and therefore, he/she will not ponder what the meaning of the

pupil’s question or comment would be. Especially during lessons in middle school,

there are often situations when pupils are making improper comments, in order to

get others’ attention. As a consequence on this level of listening, we concluded to

extract two sub-levels: Firstly, the teacher does not even hear pupils’ comments or

questions; he/she hears without listening (1a). Secondly, the teacher hears pupils’

comment or question, but he/she ignores (1b) the utterance.

2. Selective listening
The teacher is trimmed to listen only the questions concerning the topic to

be dealt with. For example, an inexperienced teacher tries to listen only to such
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pupils from whom he/she may expect “correct” answers. He/she experiences often

all kind of disturbance as a threat for his/her teacherhood. Such a teacher’s

behaviour has connections with strong control, discipline requirements and defence

mechanisms.

3. Evaluative listening
Often a teacher has in his/her mind an answer (the model answer) which

he/she expects from the pupils and with which he/she compares the pupils’

answers. Therefore, the teacher’s evaluation can be a simple verbal accepting

utterance, as Right or Good, or it could be also only a short nod, a head’s shake or

a break before moving to the next question. In a more elaborated evaluative

listening, the teacher comments the pupil’s answer, e.g. by transforming the terms

and expressions used into a correct form. Thus, we will separate a simple

evaluative listening (3a) and a more elaborated evaluative listening (3b).

4. Interpretative listening
In the interpretative listening, a teacher interprets and understands a

pupil’s answer within his/her own thinking. He/she does not have the model

answer in his/her mind. For example, he/she may repeat the pupil’s answer with

other words; thus he/she processes the pupil’s answer, and therefore, interprets it.

Also here we may separate a simple interpretation (4a) and a more elaborated

interpretation (4b).

5. Open listening
Here a teacher strives to understand a pupil’s thoughts from his/her world,

and not only to place them into his/her own “model thinking”. Open listening

requires a conscious effort from the teacher to hear, follow and understand the

pupil’s ideas. This level represents the most open situation from the pupil’s

viewpoint – the pupil is not expected to think in a certain way, but he/she has
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freedom to develop his/her own new ideas.

Examples of listening levels
In the following, we give some episodes that are selected from the

videoed lessons and represent the two-way communication in the class: usually the

teacher asks, and the pupils answer. The episodes are selected so that different

levels are represented as many-sided as possible. The episodes are analyzed, and

the teacher’s level of listening coded and reasoned.

Episode 1

Here the pupils are independently solving problems from the textbook.

The teacher checks one problem together with the whole class, in order to ensure

that everybody knows what to do. After that he tells the class to continue solving

problems.

1 Teacher: Now, do the problem C.

2 Carl: Where is it?

3 Teacher: It is on the page 23.

4 Peter: How does it go?

5 The teacher starts to go around the class looking at the pupils’ working.

Here the teacher first clearly listened to Carl’s question (2), but not any

more to Peter’s question (4). The first one might be selective listening (level 2),

whereas in the case of the second pupil he/she ignored the question (4); thus

listening happens on the level 1b.

Episode 2

The topic of the lesson was fractions and their transformations. Instruction

goes forward with short questions and answers.

1 The teacher writes the fraction 20/8 on the blackboard.
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2 Teacher: Can we transform 20/8 to a mixed number?

3 Heli: Yes.

4 Teacher: How many wholes will it give?

5 Lina: 2

6 Teacher: And how many parts are left?

7 Simon: 2

8 The teacher writes 2 2/8 on the blackboard.

9 Teacher: And can we do something to this number?

10 Sam: 4/8

11 The teacher corrects 2 4/8 on the blackboard.

12 Teacher: Sorry. A good remark.

Heli’s answer (3) to the first question was straight according to the

teacher’s expectation. Therefore, we could suppose that the teacher is acting on the

level of evaluative listening, but using a simple evaluation (level 3a). Listening of

the next answer (5) can be placed also on the same level (level 3a). In the case of

Simon’s answer (7), the teacher automatically accepts it without thinking;

therefore, we conclude that she was hearing Simon’s answer (7) without really

listening (level 1a). Sam answers to the teacher’s question (9) by correcting the

mistake made by the teacher on the blackboard. Therefore, the teacher has to

connect Sam’s answer (10) with her earlier question (6), and thus she has listened

to Sam on a higher level (level 4b).

Episode 3

Now decimal numbers are dealt with in the lesson.

1 Teacher: Is it allowed to add zeros after the decimal point wherever?

2 Maria: Yes, to the end.
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3 Teacher: Yes. Not between wherever. To the end one can add zeros

appropriately.

The teacher accepts on Maria’s answer (2) and sharpens it. This example

shows a more elaborated evaluation (level 3b).

Episode 4

This is a part of a mathematics lesson on grade 8, where the topic is the

use of percentages. In the episode we will find many-level listening.

1 Teacher: If 12 hens from the henhouse are on the yard eating, and 60 %

are inside, how many hens altogether are there in the henhouse?

2 Tina: You cannot say so that 60 % are inside.

3 Teacher: How many percents of the hens are on the yard, if 60 % are

inside?

4 Tina: Ask again.

5 Teacher: If 60 % of the hens are inside, how many percents are then

outside?

6 Jane: They are 12.

7 Teacher: In percents?

8 Jane: 40

9 Tina: How can you change like that?

10 Teacher: Well Jane. How did you get that 40?

11 Jane: Well, if there are 60 % inside, then there are 40 % left from the

whole 100 %.

12 Teacher: Yes. Now we know, how many hens there are. Now we will

continue.

The teacher changed her first question (1) into a simpler form, when Tina

announced in her first comment (2) that she did not understand the question at all.
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Then Tina asked the teacher to repeat her question (4). Jane gives firstly the

number of the hens as an answer (6). Jane’s second answer (8) was quitted only

with a nod. Finally the teacher asked Jane to reason, how she had concluded her

answer (10). Thus the teacher got little by little the answer in the form she wanted

(11).

In this episode, the teacher’s listening was mainly on the levels of

evaluation and interpretation: Based on the answer (2) she interprets that Tina did

not understand the situation at all (level 4a). The teacher has no problem to

interpret Tina’s comment; the experienced teacher divided her question into two

parts. In the case of the answers (6 and 8), listening is evaluative (level 3a). The

teacher’s reaction to Tina’s comment (9) shows that the teacher interpreted her

answer as non-understanding (level 4a), and therefore, asked Jane to give reasons

to her answer. The teacher’s last listening to Jane’s answer (11) was simple

evaluative (level 3a).

DISCUSSION

The classification of teachers’ listening into five main levels is based on

videotaped mathematics lessons; we ended up with the classification structure

given in Figure 1. In practice we noticed that the five-step classification structure

for teachers’ listening was too coarse, and we divided some levels into two sub-

levels.

Not listening

hearing without listening

ignoring

Selective listening
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Evaluative listening

simple evaluation

more elaborated evaluation

Interpretative listening

simple interpretation

more elaborated interpretation

Open listening

Figure 1. The hierarchic classification structure of teachers’ listening to their

pupils.

In our pilot study that contained only ten teachers and from each 1–3

lessons, teachers’ listening was mainly on the levels 1, 2 and 3a. Only in some

cases, the teachers reached the level 3b, and very rarely the level of listening

seemed to come up to the level 4 (interpretation). In our data, there was no case

that could have been classified on the level 5 (open listening). It is worth noticing

that in our episodes we show examples from each level of teachers’ listening that

we were able to find in the lessons, and therefore, it is no way representative.

According to our considerations the levels (1)–(3), i.e. up to evaluative

listening, seem to belong to the conventional style of teaching. There the teacher

delivers knowledge to be learned, and checks whether his/her pupils have adopted

it. In this teaching model, it is not so important what pupils are thinking as whether

they have adopted the information. Also earlier research results show that the level

of a teacher’s listening to his/her pupils seems to be in the best cases evaluative

(e.g. Pehkonen & Ejersbo 2004).
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The listening levels (4)–(5) pertain to the constructivist style of teaching.

Here the point is, what kind of ideas pupils have of the topic to be learned, and

whether their subjective knowledge is compatible to the objective knowledge.

Learning conception compatible to constructivism would demand that teachers

listen to their pupils also on the levels of interpretative and open listening. Until

then pupils begin to pay attention to their own conceptions and their deviation from

the way shown in mathematics. For the teacher, open listening is absolutely

important, in order he/she could perceive how his/her pupils interpret matters and

what kind of difficulties pupils might have in understanding the topic. Thus he/she

gets hints via which he/she can help pupils to check their conceptions and thinking.

A final note
Listening belongs to teachers’ pedagogical skills, but it has been paid

fairly little attention in teacher education programs. For example, if a teacher is not

careful enough, he/she can develop a habit to use selective listening and

concentrate only on listening to correct answers. Consequently, pupils are led to

schematic thinking. The communication between the teacher and his/her pupils

will improve, when the teacher shows that he/she tries to understand what the

pupils mean. Then the pupils are more ready to cooperate, i.e. to express also their

spontaneous thoughts. The teacher’s task is no more to be sure that the pupils

understand subject matters in a certain way, but the aim is to make a change

possible in the pupils’ thinking. Emphasizing authority or embarrassing pupils will

inhibit the formation of free communication situations.

The question of teachers’ levels of listening needs more research, since

this seems to be in a key position when implementing open teaching methods.

Especially interesting it would be to investigate the levels of teachers’ listening in
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lessons with different working methods as well as in different school forms, in

order to reach a reliable description of the state-of-art in teachers’ listening. Our

next step will be to collect from different grade levels a big sample of videotapes,

and to apply them the classification structure of listening levels.
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Intransitive Structures
Simulation of the creation of a mathematical theory

The conception of the “Hamburger Model for fostering high talented students”

outlined by an example

Hartmut Rehlich
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E-mail: hrehlich@minet.uni-jena.de

Abstract: This paper treats of a special concept of problem-oriented

learning processes which we call “simulation of the creation of a mathematical

theory”. This term should accentuate the main idea of our concept in order to

show differences and similarities to a large range of topics which are called

“problem-solving”. In chapter 2 you found a short description of the concept.

A paradigmatic example completes this description and helps economically to

point out the sense and may give an implicit answer of more questions

(adequate to our concept which too includes implicit learning processes).

1. Introduction: Spotlights on a wide problem field
a) Elections

Twelve persons want to vote for one of three candidates. The table

shows the individual order of preference of the voters, „3-2-1” (3 is the best).

How can one make such tables?

Which is the smallest similar structure?

Look for more extreme examples!
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b) Optimal distribution of numbers on dices
Consider the following game: Every player creates a dice with the sum

S=30 of all numbers on its faces. The goal is to make a good distribution of this

numbers with a high probability to get a higher number when throwing the

dice.

Some questions to stimulate the creation of a theory (and examples for valid

theorems)

Does exist a dice which can not lose?

Indeed, there is one but not {5,5,5,5,5,5) , but {0,2,4,6,8,10}.

Does exist for all sums S a dice which cannot lose?

No, only for the sums 1,2,3,4,5,6,7,8,10,12,15,18,30,36.

Let us think of k dices. What‘s about „dices” with more than k faces?

If S>k2 there is no „best dice“, otherwise there is one for some special S.

c) Efron’s set of non-transitive-dices

To figure out whether there are rich and not too complicate structures

in this problem field (which can be discovered by students from age 16 to 20), I

made first a data-mining-tour by using a computer.

Leading-questions to stimulate the creation of a mathematical theory:

What is the highest winning-probability Pmax which you can realize at the

weakest point in an Efron-circle of k dices with n faces?

What is the smallest number of dices kmin which you can realize Pmax?

What is the highest probability Pmax(3) for winning which you can realize at

the weakest point in an Efron-circle of 3 n-sided dices?
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Some results of experimental mathematics

n win : loose Pmax kmin Pmax(3)

3 5 : 4 0,556 3 0,556
4 10 : 6 0,625 4 0,5
5 16 : 9 0,64 5 0,6

6 24 : 12 0,667 4 0,555

7 33 : 16 0,673 5 0,571
8 44 : 20 0,688 6 0,609

9 56 : 25 0,691 7 0,555

10 70 : 30 0,7 6 0,6
11 85 : 36 0,702 7 0,595

12 102 : 42 0,708 8 0,583
13 120 : 49 0,71 9 0,615

14 140 : 56 0,714 8 0,586

15 161 : 64 0,716 9 0,6
16 184 : 72 0,719 8 0,609

17 208 : 81 0,72 9 0,588
18 234 : 90 0,722 10 0,611

19 261 : 100 0,723 9 0,601

20 290 : 110 0,725 10 0,6
21 320 : 121 0,726 11 0,616

22 352 : 132 0,727 10 0,595
23 385 : 144 0,728 11 0,608

24 420 : 156 0,729 12 0,609

25 456 : 169 0,73 13 0,6
26 494 : 182 0,731 12 0,615

27 533 : 196 0,731 13 0,603
28 574 : 210 0,732 12 0,607

29 616 : 225 0,732 13 0,614

In this table are some eye-

catching patterns:

Pmax

The sequence seems to be

convergent with limit 0.75.

Pmax(3)

The fibonacci-numbers occur

here as a sequence of local

extrema, increasing in a

monotone way.
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2. Didactic framework - three qualitatively different levels
and their impact on the student's activities

In the „Hamburger Projekt“ of fostering high talented students in the

past 20 years a broadly based set of material has been developed for an

arrangement of lessons, oriented on structures of real processes of mathematical

invention. The material can be used in “ordinary school lessons”, too.

The students' activity includes phases of exploring (i.e. investigation of

special cases, seeking for patterns), constructive expansion of their present

mental network (by an interplay of guesswork, proofs and refutations), phases

of generalisation in different dimensions (e.g. by changing prevailing

conditions) and working on own subjects that arise during work (this last point

is a very important characteristic).

We call these structural elements “simulation of the creation of a

mathematical theory”. The “face of the created theory” is not predetermined by

the teacher but it is a product of a discussion-process based on partnership.

We prefer relevant elementary problem fields with aesthetic and relevant

structures (the latter in the sense of a “clear teacher-conscience”).

Our approach has many connections to POLYAS' (1957) ideas about

heuristic processes. But the processes we try to initiate are embedded in a larger

frame and the training of heuristics is more implicit (e. g. we do not use

sequences of problems around a guiding principle of pre-selected heuristics as

found in the program SINUS (BAPTIST 1998)).

The process includes elements of communication (as described by

LAKATOS (1976)) and requires a minimum age (our students are at least 16 year

old). Metacognition is a controversial subject that we therefore use only very

carefully and only if obviously necessary.
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The following table compares three different concepts of teaching

mathematics and their impact on the kind of activities (I think that all three of

them are essential at the right time, the problem is to find a well balanced

mixture).

Learning situation Characterisation of Students’
activities

Optimised presentation of math.
Very often in lessons at universities
and school and in articles or books.
Terms are predetermined, „optimised
system” of definitions, theorems...
Simple exercise.

To large extend only reproduction.
Individual cognitive styles are not
considered in the majority of cases.
Many routine-tasks to assure
„instrumental understanding” (ref. to
SKEMP 1978).
No genetic growth of concept
formation, often only memorizing
networks of terms.

Problem-solving
i.e. in competitions like Math.-
Olympics or at university (small
exercise-groups),
„genetic procedure“ locally, but
sometimes results appear as if they
were created by a card trick.
Sometimes not typical for
mathematics; „short fibres“.
Authoritarian frame.

It needs more autonomy and ideas.
Training of heuristics.
Explicit given target, less necessity
to build a network of terms, to
analyse proofs in order to generalize
(if this is not explicit claimed and
often it is not because of difficult
evaluation).

Simulation of the creation of a
theory
Open problem-fields.
Strive for connections.
Genetic learning, needs power of
persistence (not possible with too
young students) typical for evolution
of mathematics.

Many own decisions, individual
focus on special aspects and
continuative questions.
Own creation of terms (later tuning
for communication), analysis of
proofs.
Intrinsic motivation is essential.
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In chapter 3 we show examples of the various activities of our

students. It is an interesting observation that dispositions occurred to represent

the Efron-circles in different ways. We found different kinds of mathematical

cast of mind as defined by KRUTETSKII (1976). Combined with different levels

of abstractive capabilities we get a 2-dimensional matrix in which the problem

solving activities of our students can be sorted.

Learning situation Teachers main-role and -activities

Optimised presentation of math.
To be found in lessons at university
and school and in articles or books.
Terms are predetermined, „optimised
system” of definitions, theorems...
Simple exercise.

Lectures.
Detailed planning of the learning
process.
T. „keeps the pot boiling“, often by
extrinsic motivation

Problem-solving
i.e. in competitions like Math.-
Olympics or at university (small
exercise-groups),
„local genetic“, but sometimes like a
card trick.
Sometimes not typical for
mathematics. „short fibres“.
Authoritarian frame

In competitions:
Choice of problems, evaluation of the
solutions.
In courses also:
To give hints, to create a „good
sequence“ of problems (sometimes
oriented on heuristics‘).
etc...

Simulation of the creation of a
theory
Open problem-fields.
Strive for connections.
Genetic learning, needs staying-
power (not possible with too young
students) typical for evolution of
mathematic.

moderation,
Dialog partner.
Role model.
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3. Problem solving and the creation of a theory, examples
from the work in our groups

The impetus at the beginning

The dices A = (1,2,5,6,7,9), B = (1,3,4,5,8,9), C = (2,3,4,6,7,8)

build up a strange set. If you play at dice for a

higher number you will find out, that – under

statistical aspects – B is better than C. The

second comparison under statistical aspects of

A and B shows that A is better than B.

Normally we would expect, that A is better

then C. But contrary to expectations we find

out, that C is better then A.

First of all:

Prove the statement (with paper and pencil or by playing at real dices with

the given numbers). Identify the 3 ratios of gain and loss.

Continuation:

Construct a similar strange set of dices with a more extreme ratio of gain and

loss.

Expansion:

(1) What’s about „dices” with a smaller or higher number of sites (i.e.

tetrahedron or octahedron or n-sided wheel of Fortune)?

(2) More than 3 dices?

(3) ...Your own ideas
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Representations used in different ways

The used representations are sorted in two dimensions:

A process of metamorphosis from concret algebraic representation to

an abstract algebraic representation, combined with analogy (this process took a

long time):

New object includes all relevant
information



Rehlich - Intransitive structures

9

In this picture we go into the opposite direction; it shows a

metamorphosis from concret algebraic representation to an abstract geometric

representation:

Some elements of the theory we created here:

Some students used the complex geometric representation. Here is an

example of considerations by using this representation which helped to create

the following strong theorem.

Result: We have an universal geometric method to build up the best

(n,n)-Efroncircles which are possible.

Now we have a look of an analogical result using an algebraic representation:

In every set of dices ordered in a circle- is a
“main-spiral”. (Proof: transitivity in IN.)
Every main-spiral represents many sets of
dices. The best of all Efron-dices
(“efronbest”) can be constructed in the way
presented to the left. (Proof: it is easy to see.)
This method of constructing the main-spiral
(one tour-around, then decrease height every
step for 1), produces Efron-circles with the
highest probability at the weakest point.
(Proof: not too simple.)

Paradigmatic example
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4. The meta-structure of working

open problem field

Variety of special individual activities,
insights, and ideas. Investigation by trial
and error, local proofs, different notions.

1. divergent phase

Communication,
compare the results,
classification,
selection of notions.

Fixing of “good

questions”

1.convergent phase

Different tools

for reasoning

and proofs,

individual work

2. divergent phase

Communication to analyze and
optimize the tools and the
structure of representation of
the theorems and their proofs.
Formulating open questions.
This leads to the „square”
Theory of flowers.

2.convergent phase
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5. Final conclusions

Making good lessons is a very complex problem. The teacher has to

take into account different needs of all persons involved in the lesson at the

same time, as well as different goals which might contradict each other. Taking

learning as a process of social construction, we have to be aware that it depends

essentially on a mixture of all components being involved. Therefore, it is very

difficult to make an appropriate external evaluation. Therefore, this article does

not aim to give a fixed recipe for a “good” lesson that should basically be left in

the teacher's responsibility. Instead, we want to describe concepts that have

worked well in certain settings. The description of our concepts is designed to

illuminate a special open approach in the large field of problem oriented

teaching.
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An everyday life problem related to expected values
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Abstract: Today there is a change in Hungarian school-mathematics.

Following the trends of PISA it has to pose much more weight on the real world

problems. There is a challenge to bring in nearer the old famous Hungarian

mathematics tradition and the provocations of the modern world. We consider

the following problem:

“Suppose there was one of six prizes inside your favorite box of cereal.

Perhaps it's a pen, a plastic movie character, or a picture card. How many

boxes of cereal would you expect to have to buy, to get all six prizes?” First we

build a model for this situation. After solving the problem on two different ways

(one of them is known the second is suitable to answer other questions) we will

generalize the problem in two directions: the number and the distribution of

prizes.

0. Introduction

In this article we develop further an interesting advanced problem the

so called cereal box problem, see [W99] or [GV02] and on the internet:

www.mste.uiuc.edu/reese/cereal/cerealWilkins.pdf. The mentioned homepage

gives possibilities to organize lessons dealt with this problem by different

simulations and their observation. The mathematical background is not easy.

We try to show it because there are two different ways which are not equal
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complicate. The citied source analyse only one and does not investigate with

the generalization, which is an important part of mathematical thinking and

problem solving. In our case there are natural situation with another

assumptions.

We show another proof for the statement about expected value and

thereafter generalize first on different number of prizes and later in the

direction to the other distribution of the prizes (not equally distributed prizes).

The idea of using thieve-formula came from A. Grétzy [GV02]. I developed it

in to the direction of different numbers of prizes and using it to answer of

questions about the distribution for example maximal probability (mode) and

median of the distribution and finally to calculate the expected value on the

other way.

I. Modelling

We are starting to build a model. If there are six prizes and all of them

are equally distributed, then buying one box can be seen as a throw with one

(regular) dice. Of course this model can be modified in the case of unequally

distributed prizes. In this case we can use a computer random simulator with a

given distributed six numbers. The question is, how many times the dice have

to be thrown until the event “every six numbers came out”. The minimal

number is 6 (if different numbers come out by every throwing), and of course

rarely very big numbers of throwing is possible. For the first solution of the

problem we develop the probability distribution of the number of the needed

throwing. In order to do it we use the logical thieve formula. How many

different positions does exist, that the nth throw happens first that every six

number came out? We have to choose one number, which firstly occurs at the
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nth throw that can be done 6 times. The rest 5 different numbers occurred

during the (n-1) throw, but we count such cases also where only 4 different

numbers came out, we have to lose these etc. Consequently we get the

following formula:

)15210310455(6 11111   nnnnn , where n is positive whole number

at least 6. Using the well-known fraction for the Laplace-probability we get:

This is linear combination of five different geometrical series. We can

research the monotony character of this distribution. By a graphical calculator

the first members of this distribution can be determined:

p6=0,01543210 p15=0,06136739 p24=0,01465061

p7=0,03858025 p16=0,05379166 p25=0,01228270

p8=0,06001372 p17=0,04662805 p26=0,01028488

p9=0,07501715 p18=0,04007466 p27=0,00860364

p10=0,08276892 p19=0,03421596 p28=0,00719165

p11=0,08439429 p20=0,02906446 p29=0,00600768

p12=0,08160926 p21=0,02458994 p30=0,00509617

p13=0,07604251 p22=0,02073905 p31=0,00418665

p14=0,06898715 p23=0,01744802 p32=0,00349122

Table 1

It shows that the probabilities are monotone increasing at the start and

later change into monotone decreasing. This fact gives the idea comparing two

neighbour members by the following way:
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We get the inequality:
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Multiply by 6n we get:
1111 240410253305   nnnn

If 11 4105   nn and 11 240330   nn then it is sure that the inequality turns

consequently it is a good estimation if we solve:
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From it follows if n =11 or 12 then turns the inequality. We have to

control only these values and we get the wished result: the maximum is the p11,

which can be seen in the table 1 as well.

In the next page the median will be counting after the mode (maximal

probability of the distribution).

For this goal we have to add the probabilities till the sum reaches 0,5.
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The last term is the cumulative probability distribution.

At the median is this expression ca. 0,5. We estimate over the searched

m value by the first two members of this express because the sum of the rest

four members always is positive. To prove this statement it is enough to see the

following inequations are right for every m > 6 natural number.
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which is true for every possible m values; similarly the second equivalent by
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It means that the median is sure less or equal then 14.

Controlling this result by the table 1 of probabilities which shows that

the sum of the members from p6 to p12 is less then 0,5 but adding p13 will be

more then 0,5. It is not so bad estimation.

Another question is: maximum how many boxes have to be bought for

example with at least 0,95 or 0,99 probability. Again used the last estimation

for the sum of the probabilities:
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The estimated value is 27, which shows again a good result controlled

by the exact value getting from the table 1 27, exactly the same. Similarly with

0,99 we get the value m > 36,07 it means m=37. The exact value is the same. If

we buy 37 boxes then the chance of getting the six different prizes is more than

0,99.

These questions could not be answered without the probability

distribution opposite to the expected value, as we will see. Using this

probability distribution the expected value is to calculate following way:
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Similarly using iteratively the formula for the geometrical series we

get the following equations:
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6
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6
6
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





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




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That means for the expected value:

14,7
6
12,37

6
25,97

6
3140

6
4120

6
566)(

55555






























XE

Another formula is for this expected value following the way of article

[W99] which use the remark that for the first prize we have to wait 1 throw

(6/6), for the second prize (the probability of a new number 5/6) is 6/5, and so

on for the sixth prize (the probability is 1/6) 6/1, consequently:

7,146325,12,11
1
6

2
6

3
6

4
6

5
6

6
6

)( XE

See more detailed in [W99]. This way of thinking can be visualised

very good by Markov-chain and further a recursive system of equation.

II. Generalization for different number of prizes

We can generalize easy by the second method, which shows for N

different prizes:

NN
NN

N
N

N
N

N
N

N
N

XE ln
12

...
321

)( 









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The first “distribution’ method” using the thieve-formula gives the

following result, first for the number of favourable events

}1)1()1(2)1(3...)2()1()1{( 1112111   nNnNnnn NNNNN .
Using the well-known fraction for the Laplace-probability:

From it the mode (maximal probability) and the median of the

distribution can be calculated of course with the suitable N value.

The expected value can be determined by this way following:


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
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



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
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n
N

n
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N
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1

1
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2
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1
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2
2
1

)1(...
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The sum can be counted by step for step members. This leads in the first step to

the express:

...1111
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2
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

...111 11
2

NNN

N
N

N
NN

N
NN

11
22

1
2 1

)12(
11211


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
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To control the result we substitute N=6 then comes out
5

6
566 






and it was the

first member of the expected value in the case of six prizes. Second step we get
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Again can be controlled by the substitution N=6.
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Similarly using the formula of the endless geometric series we get the wanted

result, which is too complicate to write now.

III. Generalization of not equally distributed prizes

The case of the „not equally distributed prizes” is much more

complicate I can prove only for two different prizes:

2
2

1
23211

1
1 




p
p

p
p and for three different prizes:
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The first inequality (the case two prizes) is easy to be shown. For the second we

have to use that 1321  ppp 2
3
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3

3

2
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is true, using the inequations

between the harmonic and arithmetical mean:
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It remains to prove:
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Starting with a new order following the same divisors:
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it is enough to show, that 3
111

2
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
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Introducing new variables for the divisors 321 1,1,1 pcpbpa 

we get 3
111

2 





 







c
c

b
b

a
a .

It means that it is enough to see 331112 




 

cba . From the inequality

between the harmonic and arithmetic mean follows:

3
2

3
)(3

3111
3 321 


pppcba

cba
that is equivalent with the wanted inequality.

We finished the proof with it.

The case of six different prizes is again so complicate, that not only

the proof, but the size of formulate of inequalities are so rapidly increasing that

can not be handled normally. This is a good mathematical research question. I

conjecture the statement is true: if the probability is not equal-distributed the

expected value will be more. It means that for the consumer would be important

to allow to control of the prize-distribution. The sales have advantage if the

distribution of the different prizes differs from the equal-distribution.

Remark: College Rehlich sent me a very good structured way to build up an

inductive reasoning in order to show that last statement true for every n positive

integer. Maybe we can write a new article about this generalization. The time

press do not allowed me a deeper analyse this method and writing of this idea is

not success during the time of corrections. It would be better to work on it

common with college Rehlich.
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IV. Some didactical remarks

In the year 2001 the problem has been tested in two different age-

groups. For younger (13-14 years old) it was presented as a play (see in

[GV02]). The pupils constructed a model and made experiences with dice. The

results were collected as a statistics. They counted the arithmetic mean. It was

(15,03) quite near to the expected value (14,7). It was homework twice to

repeat this experiment. On the next lesson they collected the new results and

the mean was 14,67. The idea of a mathematical calculation is too high for this

age group, but the computer simulation is a possible, or a similar method as

Engel recommended for Markov-progress can be used for them.

For the age 17-18 as well we tested this problem but in that case the

mathematical methods as well with geometrical series and logical-sieve

formula. They were a higher-level group in mathematics. Two or three (he used

a little help from teacher) pupils could solve the problem. They had some

technical problem during the counting. One of them used a recursive way and

two worked a way from the probabilities using the geometrical series. We do

not use any visualisation; it can be a next step using the remark of Rehlich.

The new trend in teaching mathematics is to involve the realistic

problems and more concrete mathematization-process (see f. E. PISA). The

above-mentioned problem is a good muster for it, a good project-idea. An

advantage of this problem is the possible different accessibilities starting with

experiences computer simulation and finally the different mathematical tools.

The natural generalization is a further useful character of the problem. I will

work on it and try to organise a new experiment in a school.
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Problem solving and problem posing revisited
Some additional steps towards theory building and outlook to possible im-

plementation

Bernd Zimmermann

Friedrich-Schiller-University of Jena

E-mail: bezi@minet.uni-jena.de

Abstract: Mathematical problem solving and posing are already taken for

granted as guiding ideas in mathematics education (cf. Stacey 2004). Nevertheless,

there are still deficiencies and difficulties in theoretical clarification as well as in

implementation in normal classroom teaching.

We take the work of Schoenfeld 1985 and his latest suggestions Schoenfeld 2005 as

a starting point for some critical remarks and questions towards a more encom-

passing theory of mathematical problem solving and -finding. We look for some

possible relations to modern contributions to procedural and conceptual learning

(Haapasalo & Kadijevich 2000), to questions of understanding (Fennema & Rom-

berg 1999), to brain research (Spitzer 2002) and history of problem solving

(Zimmermann 1991).

This framework gave us some additional possibilities for guiding and structuring

implementations.

What’s a theory and what’s the use of it?
“Theories should help to understand a well defined domain consistently

and help to pose and answer questions”

(Freudenthal 1991, 127, 128)
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Do we already have a theory of problem solving and finding? Is this do-

main already “well defined”? In spite of considerable progress in this direction

during the last twenty years – as we will try to line out this point later on – there

might be still some doubts (cf. Lester 1980, p. 290).

What might be the use of a theory?

According to Boltzmann, nothing is more practical than a good theory (cf.

the title of a main lecture of Sfard at the last ICME in Copenhagen, paraphrasing

this well known quotation with the following title of her lecture “What can be more

practical than good research?”

Let us listen to some other quite well known persons who stress the im-

portance of theories in research:

“It is the theory which determines what is observable” (Kant 1787, Ein-

stein 1930, Popper 1976, Bauersfeld 1977).

But where do theories come from? Of course, they do not “spring into the

world like Pallas Athene from the forehead of Zeus” (cf. Feyerabend 1977, p. 362),

but they develop over a long process of forming conjectures and refutations (Pop-

per 1963), observations and their critical evaluation.

We can summarize: There is no theory without sound analysis of praxis

and no structured and reflected praxis without sound theoretical considerations or,

as Kant said:

“Praxis without theory is blind and theory without praxis is empty”

(Kant 1787 B XVIII)

These remarks might help to clarify, to reflect on and to understand better

the theory-building process as a kind of modelling process:
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We can start in any of the four “boxes”: on the level of praxis at the bot-

tom or, at the level of theories on the top. In any situation, normally one wants to

improve it. This means very often to follow the circle in the clockwise sense. But,

sometimes it might be also reasonable, to go in the counter clockwise direction. E.

g., if you want to develop a new schoolbook (box bottom right), it might be useful

to have a look on latest theories (upper box to the right) etc.

Of course, all these developments and activities have to meet standards of

quality. A good set for orientation for considerations and activities in all four

“boxes” are:

teaching;
learning;
assessing

designing:

learning environments;

instruments for assess-

ment

SSttaannddaarrddss

research in math. ed.;
learning theories;
brain research;
history of prob.solving

level of theo-

retical consid-

erations

level of practi-

cal activities

developing a (revised)

theory of problem solv-

ing and -finding

Figure 1 Process of theory formation (theory modelling)
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Relevance, originality, validity (methods), objectivity, rigor and precision,

predictability, reproducibility, relatedness (cf. Kilpatrick 1992 and Sierpinska

1992).

In the remaining paper we want to start with considerations in the “upper

box to the left” and want to make a transition to the right box.

Research in mathematical problem solving and finding
Schoenfeld`s approach to problem solving 1985 and 2005

The work of Schoenfeld 1985 encompasses the following four parts:

knowledge base, strategies, beliefs, control (metacognition self-regulation).

During the last twenty years, the development of mathematics education

went in directions some of which can be sketched in the following way:

- more emphasis on computer tools in the classroom (CAS, DGS, spread-

sheets)

- more emphasis on e-learning via internet

- more interest in the learning of mathematics of younger children

- more focussing on teacher training

- more interest in comparative studies

These trends could be observed in discussions and presentations at

ICME10.

They had and still have impact on the development of mathematical prob-

lem solving and finding, too.

In Mainz 2005 Schoenfeld presented the thesis that the following “fac-

tors” are most important to explain relevant teacher behavior:

goals , beliefs, knowledge



Zimmermann - Problem solving and problem posing

5

Taking into account these statements as well as the modern trends in

mathematics education quoted above, the following questions can be posed:

a) Focus on students:

Schoenfeld’s experience is mainly constituted by teaching college stu-

dents (age about 20). There seems to be no special focus in his research on the

learning and teaching of problem solving and finding of younger children. There is

a special need to learn more about the role of the knowledge base and control resp.

metacognition in youngsters. Too much emphasis on externalizing thought proc-

esses and reflection on them might even hamper the learning progress of young-

sters (cf. Kretschmer 1984).

- At what age metacognition helps to foster problem solving and finding?

- What about individual differences in problem solving and finding styles

(cf. Zimmermann 1977, 1981, Krutetskii 1976, Heinrich 2004)?

- What is the relation between modelling and problem solving and finding?

- What is the role of computers in problem solving and finding?

- What is the role of collaborative learning in problem solving and finding?

- How to assess and evaluate problem solving and –finding processes as

well as understanding in a more objective and standardized way (e. g. by

computer support, cf. Rehlich 2004)?

- What about cross-cultural comparative studies in problem solving and

finding (cf. e.g. Cai & Hwang, 2002)?

b) Focus on teachers:

- What might be the possible consequences or possible answers to the ques-

tions posed in a) for teacher training?

- What about individual differences in the way of teaching problem solving

and posing?
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- What about relations between teachers’ beliefs about problem solving and

finding and their teaching methods?

- What about competencies of teachers and student teachers?

o Flexibility/creativity with respect to mathematics AND educa-

tion?

o Sensitivity for the complexity of mathematics instruction

(Kießwetter 1994, Frensch & Funke 1995, Fritzlar 2003)?

o Design of productive learning environments (cf. Rehlich 2004)?

c) Focus on mathematics educators:

It is well known that there are not only different mathematical belief-

systems of pupils and teachers (cf. Leder G., Pehkonen & Törner (2002),

Zimmermann 1991, 1997), but also of mathematics educators (cf. Zimmermann

1983).

There is special actuality of this aspect when looking at the different

mathematical background philosophies on which the problems in TIMSS (more

formal) and PISA (more application oriented) were designed. When thinking, e. g.

about the excellent tradition concerning mathematics in Hungary, differences in

results of Hungarian pupils in these two tests (cf. Vári 2004) might be explained by

the differences in the corresponding philosophies.

Relations to procedural (p) and conceptual (c) learning and un-
derstanding

According to Carpenter & Lehrer in Fennema & Romberg 1999 under-

standing (of mathematics) can be characterized by the following components: (1)

constructing relationships, (2) extending, applying knowledge (3) reflection (4)

communication.
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Conceptual and procedural learning have been in focus of mathematics

educators at least since Hiebert edited his nice book about this theme in 1986.

Haapasalo & Kadjievicz 2000 made an excellent update and augmentation

to this field. According to them - with empirical evidence from a project about

learning of fractions - simultaneous activation of p and c and of different represen-

tations (of processes or concepts) might foster better understanding (c) and prob-

lem solving processes (p). One can relate this statement to the process-

competencies and content-competencies of the NCTM 2000).

Problem solving and –finding and modern brain research
There are some results from modern brain research quoted by Spitzer

(2002), which support the assumption that the learning of processes is ahead of the

learning of concepts. He refers to the learning of a language at early ages and espe-

cially to grammar and conceptual understanding.

By such considerations one can see a support of the following statement,

too: “Cognition does not start with concepts, but rather the other way around: con-

cepts are the result of cognitive processes.” (Freudenthal 1991, 18).

By this, one might see that the learning of heuristics should be done

mainly or at least first implicitly (without conceptualization), cf. e.g. Bauersfeld

1993. You can find even more evidence for this thesis when looking at the history

of mathematics (see next paragraph). In the book of Spitzer one can also find sup-

port of old assumptions about motivation and sustainable learning (not only of

mathematics).

History of mathematical problem solving and -finding



Zimmermann - Problem solving and problem posing

8

If one looks at the history of mathematics as a very long process of devel-

opment of cognitive processes, one can observe, e. g., which heuristics proved to

be very “successful” over some 5000 years and which other activities and motiva-

tion helped to create new mathematics. One can find evidence that heuristics were

applied nearly always implicitly over a long range of time before they were made

explicit (cf. Zimmermann 1991, 2003, 2003a).

Examples for attempts to implement some elements of this framework

into the mathematics classroom can be found in Scholz et al. 2005 as well as in a

new text-book series (Cukrowicz & Zimmermann 2000 - 2005).
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